{"title":"针对非平滑非凸多目标优化的米夫林线搜索子梯度有效算法","authors":"Morteza Maleknia , Majid Soleimani-damaneh","doi":"10.1016/j.ejor.2024.07.019","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a descent subgradient algorithm for unconstrained nonsmooth nonconvex multiobjective optimization problems. To find a descent direction, we present an iterative process that efficiently approximates the <span><math><mi>ɛ</mi></math></span>-subdifferential of each objective function. To this end, we develop a new variant of Mifflin’s line search in which the subgradients are arbitrary and its finite convergence is proved under a semismooth assumption. To reduce the number of subgradient evaluations, we employ a backtracking line search that identifies the objectives requiring an improvement in the current approximation of the <span><math><mi>ɛ</mi></math></span>-subdifferential. Meanwhile, for the remaining objectives, new subgradients are not computed. Unlike bundle-type methods, the proposed approach can handle nonconvexity without the need for algorithmic adjustments. Moreover, the quadratic subproblems have a simple structure, and hence the method is easy to implement. We analyze the global convergence of the proposed method and prove that any accumulation point of the generated sequence satisfies a necessary Pareto optimality condition. Furthermore, our convergence analysis addresses a theoretical challenge in a recently developed subgradient method. Through numerical experiments, we observe the practical capability of the proposed method and evaluate its efficiency when applied to a diverse range of nonsmooth test problems.</p></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective subgradient algorithm via Mifflin’s line search for nonsmooth nonconvex multiobjective optimization\",\"authors\":\"Morteza Maleknia , Majid Soleimani-damaneh\",\"doi\":\"10.1016/j.ejor.2024.07.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a descent subgradient algorithm for unconstrained nonsmooth nonconvex multiobjective optimization problems. To find a descent direction, we present an iterative process that efficiently approximates the <span><math><mi>ɛ</mi></math></span>-subdifferential of each objective function. To this end, we develop a new variant of Mifflin’s line search in which the subgradients are arbitrary and its finite convergence is proved under a semismooth assumption. To reduce the number of subgradient evaluations, we employ a backtracking line search that identifies the objectives requiring an improvement in the current approximation of the <span><math><mi>ɛ</mi></math></span>-subdifferential. Meanwhile, for the remaining objectives, new subgradients are not computed. Unlike bundle-type methods, the proposed approach can handle nonconvexity without the need for algorithmic adjustments. Moreover, the quadratic subproblems have a simple structure, and hence the method is easy to implement. We analyze the global convergence of the proposed method and prove that any accumulation point of the generated sequence satisfies a necessary Pareto optimality condition. Furthermore, our convergence analysis addresses a theoretical challenge in a recently developed subgradient method. Through numerical experiments, we observe the practical capability of the proposed method and evaluate its efficiency when applied to a diverse range of nonsmooth test problems.</p></div>\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377221724005605\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724005605","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
An effective subgradient algorithm via Mifflin’s line search for nonsmooth nonconvex multiobjective optimization
We propose a descent subgradient algorithm for unconstrained nonsmooth nonconvex multiobjective optimization problems. To find a descent direction, we present an iterative process that efficiently approximates the -subdifferential of each objective function. To this end, we develop a new variant of Mifflin’s line search in which the subgradients are arbitrary and its finite convergence is proved under a semismooth assumption. To reduce the number of subgradient evaluations, we employ a backtracking line search that identifies the objectives requiring an improvement in the current approximation of the -subdifferential. Meanwhile, for the remaining objectives, new subgradients are not computed. Unlike bundle-type methods, the proposed approach can handle nonconvexity without the need for algorithmic adjustments. Moreover, the quadratic subproblems have a simple structure, and hence the method is easy to implement. We analyze the global convergence of the proposed method and prove that any accumulation point of the generated sequence satisfies a necessary Pareto optimality condition. Furthermore, our convergence analysis addresses a theoretical challenge in a recently developed subgradient method. Through numerical experiments, we observe the practical capability of the proposed method and evaluate its efficiency when applied to a diverse range of nonsmooth test problems.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.