土壤-作物模型校准协议

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-07-17 DOI:10.1016/j.envsoft.2024.106147
Daniel Wallach , Samuel Buis , Diana-Maria Seserman , Taru Palosuo , Peter J. Thorburn , Henrike Mielenz , Eric Justes , Kurt-Christian Kersebaum , Benjamin Dumont , Marie Launay , Sabine Julia Seidel
{"title":"土壤-作物模型校准协议","authors":"Daniel Wallach ,&nbsp;Samuel Buis ,&nbsp;Diana-Maria Seserman ,&nbsp;Taru Palosuo ,&nbsp;Peter J. Thorburn ,&nbsp;Henrike Mielenz ,&nbsp;Eric Justes ,&nbsp;Kurt-Christian Kersebaum ,&nbsp;Benjamin Dumont ,&nbsp;Marie Launay ,&nbsp;Sabine Julia Seidel","doi":"10.1016/j.envsoft.2024.106147","DOIUrl":null,"url":null,"abstract":"<div><p>Process-based soil-crop models are widely used in agronomic research. They are major tools for evaluating climate change impact on crop production. Multi-model simulation studies show a wide diversity of results among models, implying that simulation results are very uncertain. A major path to improving simulation results is to propose improved calibration practices that are widely applicable. This study proposes an innovative generic calibration protocol. The two major innovations concern the treatment of multiple output variables and the choice of parameters to estimate, both of which are based on standard statistical procedure adapted to the particularities of soil-crop models. The protocol performed well in a challenging artificial-data test. The protocol is formulated so as to be applicable to a wide range of models and data sets. If widely adopted, it could substantially reduce model error and inter-model variability, and thus increase confidence in soil-crop model simulations.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"180 ","pages":"Article 106147"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A calibration protocol for soil-crop models\",\"authors\":\"Daniel Wallach ,&nbsp;Samuel Buis ,&nbsp;Diana-Maria Seserman ,&nbsp;Taru Palosuo ,&nbsp;Peter J. Thorburn ,&nbsp;Henrike Mielenz ,&nbsp;Eric Justes ,&nbsp;Kurt-Christian Kersebaum ,&nbsp;Benjamin Dumont ,&nbsp;Marie Launay ,&nbsp;Sabine Julia Seidel\",\"doi\":\"10.1016/j.envsoft.2024.106147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Process-based soil-crop models are widely used in agronomic research. They are major tools for evaluating climate change impact on crop production. Multi-model simulation studies show a wide diversity of results among models, implying that simulation results are very uncertain. A major path to improving simulation results is to propose improved calibration practices that are widely applicable. This study proposes an innovative generic calibration protocol. The two major innovations concern the treatment of multiple output variables and the choice of parameters to estimate, both of which are based on standard statistical procedure adapted to the particularities of soil-crop models. The protocol performed well in a challenging artificial-data test. The protocol is formulated so as to be applicable to a wide range of models and data sets. If widely adopted, it could substantially reduce model error and inter-model variability, and thus increase confidence in soil-crop model simulations.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"180 \",\"pages\":\"Article 106147\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002081\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002081","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于过程的土壤-作物模型被广泛应用于农艺学研究。它们是评估气候变化对作物生产影响的主要工具。多模型模拟研究表明,不同模型的结果差异很大,这意味着模拟结果具有很大的不确定性。改进模拟结果的一个主要途径是提出可广泛应用的改进校准方法。本研究提出了一种创新的通用校准协议。两个主要创新点涉及多个输出变量的处理和参数估计的选择,这两个方面都是基于标准统计程序,并根据土壤-作物模型的特殊性进行了调整。该方案在一次具有挑战性的人工数据测试中表现良好。该规程适用于各种模型和数据集。如果被广泛采用,它可以大大减少模型误差和模型间的变异性,从而提高对土壤-作物模型模拟的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A calibration protocol for soil-crop models

Process-based soil-crop models are widely used in agronomic research. They are major tools for evaluating climate change impact on crop production. Multi-model simulation studies show a wide diversity of results among models, implying that simulation results are very uncertain. A major path to improving simulation results is to propose improved calibration practices that are widely applicable. This study proposes an innovative generic calibration protocol. The two major innovations concern the treatment of multiple output variables and the choice of parameters to estimate, both of which are based on standard statistical procedure adapted to the particularities of soil-crop models. The protocol performed well in a challenging artificial-data test. The protocol is formulated so as to be applicable to a wide range of models and data sets. If widely adopted, it could substantially reduce model error and inter-model variability, and thus increase confidence in soil-crop model simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Probability analysis of shallow landslides in varying vegetation zones with random soil grain-size distribution Variable sensitivity analysis in groundwater level projections under climate change adopting a hybrid machine learning algorithm Taxonomy of purposes, methods, and recommendations for vulnerability analysis Canopy height Mapper: A google earth engine application for predicting global canopy heights combining GEDI with multi-source data Integrated STL-DBSCAN algorithm for online hydrological and water quality monitoring data cleaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1