在来自分解的矩阵约束条件下最大化随机集合函数

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Combinatorial Optimization Pub Date : 2024-07-28 DOI:10.1007/s10878-024-01193-z
Shengminjie Chen, Donglei Du, Wenguo Yang, Suixiang Gao
{"title":"在来自分解的矩阵约束条件下最大化随机集合函数","authors":"Shengminjie Chen, Donglei Du, Wenguo Yang, Suixiang Gao","doi":"10.1007/s10878-024-01193-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, we focus on maximizing the stochastic DS decomposition problem. If the constraint is a uniform matroid, we design an adaptive policy, namely <span>Myopic Parameter Conditioned Greedy</span>, and prove its theoretical guarantee <span>\\(f(\\varTheta (\\pi _k))-(1-c_G)g(\\varTheta (\\pi _k))\\ge (1-e^{-1})F(\\pi ^*_A, \\varTheta (\\pi _k)) - G(\\pi ^*_A,\\varTheta (\\pi _k))\\)</span>, where <span>\\(F(\\pi ^*_A, \\varTheta (\\pi _k)) = \\mathbb {E}_{\\varTheta }[f(\\varTheta (\\pi ^*_A)) \\vert \\varTheta (\\pi _k)]\\)</span>. When the constraint is a general matroid constraint, we design the <span>Parameter Measured Continuous Conditioned Greedy</span> to return a fractional solution. To round an integer solution from the fractional solution, we adopt the lattice contention resolution and prove that there is a <span>\\((b, \\frac{1-e^{-b}}{b})\\)</span> lattice CR scheme under a matroid constraint. Additionally, we adopt the pipage rounding to obtain a non-adaptive policy with the theoretical guarantee <span>\\(F(\\pi )-(1-c_G)G(\\pi ) \\ge (1-e^{-1}) F(\\pi ^*_A) - G(\\pi ^*_A) - O(\\epsilon )\\)</span> and utlize the <span>\\((1,1-e^{-1})\\)</span>-lattice contention resolution scheme <span>\\(\\tau \\)</span> to obtain an adaptive solution <span>\\(\\mathbb {E}_{\\tau \\sim \\varLambda } [f(\\tau (\\varTheta (\\pi )))- (1-c_G) g(\\tau (\\varTheta (\\pi )))] \\ge (1-e^{-1})^2F(\\pi ^*_A,\\varTheta (\\pi )) - (1-e^{-1}) G(\\pi ^*_A,\\varTheta (\\pi )) -O(\\epsilon )\\)</span>. Since any set function can be expressed as the DS decomposition, our framework provides a method for solving the maximization problem of set functions defined on a random variable set.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"19 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing stochastic set function under a matroid constraint from decomposition\",\"authors\":\"Shengminjie Chen, Donglei Du, Wenguo Yang, Suixiang Gao\",\"doi\":\"10.1007/s10878-024-01193-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we focus on maximizing the stochastic DS decomposition problem. If the constraint is a uniform matroid, we design an adaptive policy, namely <span>Myopic Parameter Conditioned Greedy</span>, and prove its theoretical guarantee <span>\\\\(f(\\\\varTheta (\\\\pi _k))-(1-c_G)g(\\\\varTheta (\\\\pi _k))\\\\ge (1-e^{-1})F(\\\\pi ^*_A, \\\\varTheta (\\\\pi _k)) - G(\\\\pi ^*_A,\\\\varTheta (\\\\pi _k))\\\\)</span>, where <span>\\\\(F(\\\\pi ^*_A, \\\\varTheta (\\\\pi _k)) = \\\\mathbb {E}_{\\\\varTheta }[f(\\\\varTheta (\\\\pi ^*_A)) \\\\vert \\\\varTheta (\\\\pi _k)]\\\\)</span>. When the constraint is a general matroid constraint, we design the <span>Parameter Measured Continuous Conditioned Greedy</span> to return a fractional solution. To round an integer solution from the fractional solution, we adopt the lattice contention resolution and prove that there is a <span>\\\\((b, \\\\frac{1-e^{-b}}{b})\\\\)</span> lattice CR scheme under a matroid constraint. Additionally, we adopt the pipage rounding to obtain a non-adaptive policy with the theoretical guarantee <span>\\\\(F(\\\\pi )-(1-c_G)G(\\\\pi ) \\\\ge (1-e^{-1}) F(\\\\pi ^*_A) - G(\\\\pi ^*_A) - O(\\\\epsilon )\\\\)</span> and utlize the <span>\\\\((1,1-e^{-1})\\\\)</span>-lattice contention resolution scheme <span>\\\\(\\\\tau \\\\)</span> to obtain an adaptive solution <span>\\\\(\\\\mathbb {E}_{\\\\tau \\\\sim \\\\varLambda } [f(\\\\tau (\\\\varTheta (\\\\pi )))- (1-c_G) g(\\\\tau (\\\\varTheta (\\\\pi )))] \\\\ge (1-e^{-1})^2F(\\\\pi ^*_A,\\\\varTheta (\\\\pi )) - (1-e^{-1}) G(\\\\pi ^*_A,\\\\varTheta (\\\\pi )) -O(\\\\epsilon )\\\\)</span>. Since any set function can be expressed as the DS decomposition, our framework provides a method for solving the maximization problem of set functions defined on a random variable set.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01193-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01193-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们专注于随机 DS 分解问题的最大化。如果约束条件是均匀矩阵,我们会设计一种自适应策略,即近视参数条件贪婪策略(Myopic Parameter Conditioned Greedy),并证明其理论保证 \(f(\varTheta (\pi _k))-(1-c_G)g(\varTheta (\pi _k))\ge (1-e^{-1})F(\pi ^*_A、\(\pi _k)) - G(\pi ^*_A,\varTheta (\pi _k))\), 其中 \(F(\pi ^*_A, \varTheta (\pi _k)) = \mathbb {E}_{\varTheta }[f(\varTheta (\pi ^*_A)) \vert \varTheta (\pi _k)]\).当约束条件是一般矩阵约束条件时,我们设计参数测量连续条件贪心算法来返回分数解。为了从分数解舍入一个整数解,我们采用了晶格争用解析法,并证明了在矩阵约束下存在一个 \((b, \frac{1-e^{-b}}{b})\) 晶格 CR 方案。此外,我们采用管道舍入法得到了一个非自适应策略,其理论保证是 \(F(\pi )-(1-c_G)G(\pi ) \ge (1-e^{-1}) F(\pi ^*_A) - G(\pi ^*_A) - O(\epsilon )\) 并利用了 \((1、((1,(1-e^{-1}))-晶格争用解决方案来获得自适应解[f(\tau (\varTheta (\pi )))- (1-c_G) g(\tau (\varTheta (\pi )))] \ge (1-e^{-1})^2F(\pi ^*_A,\varTheta (\pi ))- (1-e^{-1}) G(\pi ^*_A,\varTheta (\pi ))-O(\epsilon )\).由于任何集合函数都可以表示为 DS 分解,我们的框架为解决定义在随机变量集合上的集合函数的最大化问题提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing stochastic set function under a matroid constraint from decomposition

In this work, we focus on maximizing the stochastic DS decomposition problem. If the constraint is a uniform matroid, we design an adaptive policy, namely Myopic Parameter Conditioned Greedy, and prove its theoretical guarantee \(f(\varTheta (\pi _k))-(1-c_G)g(\varTheta (\pi _k))\ge (1-e^{-1})F(\pi ^*_A, \varTheta (\pi _k)) - G(\pi ^*_A,\varTheta (\pi _k))\), where \(F(\pi ^*_A, \varTheta (\pi _k)) = \mathbb {E}_{\varTheta }[f(\varTheta (\pi ^*_A)) \vert \varTheta (\pi _k)]\). When the constraint is a general matroid constraint, we design the Parameter Measured Continuous Conditioned Greedy to return a fractional solution. To round an integer solution from the fractional solution, we adopt the lattice contention resolution and prove that there is a \((b, \frac{1-e^{-b}}{b})\) lattice CR scheme under a matroid constraint. Additionally, we adopt the pipage rounding to obtain a non-adaptive policy with the theoretical guarantee \(F(\pi )-(1-c_G)G(\pi ) \ge (1-e^{-1}) F(\pi ^*_A) - G(\pi ^*_A) - O(\epsilon )\) and utlize the \((1,1-e^{-1})\)-lattice contention resolution scheme \(\tau \) to obtain an adaptive solution \(\mathbb {E}_{\tau \sim \varLambda } [f(\tau (\varTheta (\pi )))- (1-c_G) g(\tau (\varTheta (\pi )))] \ge (1-e^{-1})^2F(\pi ^*_A,\varTheta (\pi )) - (1-e^{-1}) G(\pi ^*_A,\varTheta (\pi )) -O(\epsilon )\). Since any set function can be expressed as the DS decomposition, our framework provides a method for solving the maximization problem of set functions defined on a random variable set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
期刊最新文献
Enhanced deterministic approximation algorithm for non-monotone submodular maximization under knapsack constraint with linear query complexity A novel arctic fox survival strategy inspired optimization algorithm Dynamic time window based full-view coverage maximization in CSNs Different due-window assignment scheduling with deterioration effects An upper bound for neighbor-connectivity of graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1