回归曲线的多变化点检测

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Canadian Journal of Statistics-Revue Canadienne De Statistique Pub Date : 2024-07-25 DOI:10.1002/cjs.11816
Yunlong Wang
{"title":"回归曲线的多变化点检测","authors":"Yunlong Wang","doi":"10.1002/cjs.11816","DOIUrl":null,"url":null,"abstract":"<p>Nonparametric estimation of a regression curve becomes crucial when the underlying dependence structure between covariates and responses is not explicit. While existing literature has addressed single change-point estimation for regression curves, the problem of multiple change points remains unresolved. In an effort to bridge this gap, this article introduces a nonparametric estimator for multiple change points by minimizing a penalized weighted sum of squared residuals, presenting consistent results under mild conditions. Additionally, we propose a cross-validation-based procedure that possesses the advantage of being tuning-free. Our simulation results showcase the competitive performance of these new procedures when compared with state-of-the-art methods. As an illustration of their utility, we apply these procedures to a real dataset.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple change-point detection for regression curves\",\"authors\":\"Yunlong Wang\",\"doi\":\"10.1002/cjs.11816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonparametric estimation of a regression curve becomes crucial when the underlying dependence structure between covariates and responses is not explicit. While existing literature has addressed single change-point estimation for regression curves, the problem of multiple change points remains unresolved. In an effort to bridge this gap, this article introduces a nonparametric estimator for multiple change points by minimizing a penalized weighted sum of squared residuals, presenting consistent results under mild conditions. Additionally, we propose a cross-validation-based procedure that possesses the advantage of being tuning-free. Our simulation results showcase the competitive performance of these new procedures when compared with state-of-the-art methods. As an illustration of their utility, we apply these procedures to a real dataset.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"52 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11816\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11816","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

当协变量和响应之间的基本依赖结构不明确时,回归曲线的非参数估计就变得至关重要。现有文献已经解决了回归曲线的单变化点估计问题,但多变化点问题仍未解决。为了缩小这一差距,本文通过最小化受惩罚的加权残差平方和,介绍了一种多变化点的非参数估计方法,并在温和条件下给出了一致的结果。此外,我们还提出了一种基于交叉验证的程序,该程序具有无需调整的优点。我们的模拟结果表明,与最先进的方法相比,这些新程序的性能极具竞争力。为了说明这些程序的实用性,我们将其应用于一个真实的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple change-point detection for regression curves

Nonparametric estimation of a regression curve becomes crucial when the underlying dependence structure between covariates and responses is not explicit. While existing literature has addressed single change-point estimation for regression curves, the problem of multiple change points remains unresolved. In an effort to bridge this gap, this article introduces a nonparametric estimator for multiple change points by minimizing a penalized weighted sum of squared residuals, presenting consistent results under mild conditions. Additionally, we propose a cross-validation-based procedure that possesses the advantage of being tuning-free. Our simulation results showcase the competitive performance of these new procedures when compared with state-of-the-art methods. As an illustration of their utility, we apply these procedures to a real dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
期刊最新文献
Issue Information True and false discoveries with independent and sequential e-values Issue Information Multiple change-point detection for regression curves Robust estimation of loss-based measures of model performance under covariate shift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1