氧空位中的铂单原子通过增强氢溢出促进水-气反向转换反应

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-07-25 DOI:10.1007/s40843-024-3011-6
Xin Kang  (, ), Jiancong Liu  (, ), Ying Xie  (, ), Dongxu Wang  (, ), Qihui Liu  (, ), Peng Yu  (, ), Chungui Tian  (, ), Honggang Fu  (, )
{"title":"氧空位中的铂单原子通过增强氢溢出促进水-气反向转换反应","authors":"Xin Kang \n (,&nbsp;),&nbsp;Jiancong Liu \n (,&nbsp;),&nbsp;Ying Xie \n (,&nbsp;),&nbsp;Dongxu Wang \n (,&nbsp;),&nbsp;Qihui Liu \n (,&nbsp;),&nbsp;Peng Yu \n (,&nbsp;),&nbsp;Chungui Tian \n (,&nbsp;),&nbsp;Honggang Fu \n (,&nbsp;)","doi":"10.1007/s40843-024-3011-6","DOIUrl":null,"url":null,"abstract":"<div><p>The construction of synergistic catalysis of single atom catalysts (SACs) and oxygen vacancies (O<sub>V</sub>) on supports is crucial for the enhancement of heterogeneous catalytic efficiency, yet presents considerable challenges. Herein, we have developed an amine-molecule-assisted <i>in-situ</i> anchoring strategy that effectively stabilizes Pt SACs on O<sub>V</sub> sites of reduced TiO<sub>2</sub> (TiO<sub>2−<i>x</i></sub>) by controlling the interaction of amine with Pt species and TiO<sub>2−<i>x</i></sub>. Direct evidence indicates that Pt SACs are anchored on the O<sub>V</sub> with forming Pt<sup>δ+</sup>–O<sub>V</sub>–Ti<sup>3+</sup> sites and strong metal-support interaction, which not only prevents the sintering of Pt SACs under high-temperature reduction treatments, but also enhances the hydrogen spillover process to facilitate the formation of more O<sub>V</sub> sites. During the reverse water-gas shift (RWGS) reaction, the enhanced amount of O<sub>V</sub> sites can increase CO<sub>2</sub> adsorption, while the Pt SACs can efficiently promote the activation and spillover of hydrogen. Their combined synergistic effects greatly improve its catalytic performance with a high turnover frequency (TOF) of 9289 h<sup>−1</sup> at 330°C and notable stability for over 200 h, surpassing those of Pt clusters and nanoparticles on TiO<sub>2−<i>x</i></sub>. This work provides a new avenue for the controllable synthesis of synergistic catalysts with SACs and O<sub>V</sub>, significantly advancing catalytic efficiency.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3579 - 3588"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pt single atoms in oxygen vacancies boost reverse water-gas shift reaction by enhancing hydrogen spillover\",\"authors\":\"Xin Kang \\n (,&nbsp;),&nbsp;Jiancong Liu \\n (,&nbsp;),&nbsp;Ying Xie \\n (,&nbsp;),&nbsp;Dongxu Wang \\n (,&nbsp;),&nbsp;Qihui Liu \\n (,&nbsp;),&nbsp;Peng Yu \\n (,&nbsp;),&nbsp;Chungui Tian \\n (,&nbsp;),&nbsp;Honggang Fu \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3011-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The construction of synergistic catalysis of single atom catalysts (SACs) and oxygen vacancies (O<sub>V</sub>) on supports is crucial for the enhancement of heterogeneous catalytic efficiency, yet presents considerable challenges. Herein, we have developed an amine-molecule-assisted <i>in-situ</i> anchoring strategy that effectively stabilizes Pt SACs on O<sub>V</sub> sites of reduced TiO<sub>2</sub> (TiO<sub>2−<i>x</i></sub>) by controlling the interaction of amine with Pt species and TiO<sub>2−<i>x</i></sub>. Direct evidence indicates that Pt SACs are anchored on the O<sub>V</sub> with forming Pt<sup>δ+</sup>–O<sub>V</sub>–Ti<sup>3+</sup> sites and strong metal-support interaction, which not only prevents the sintering of Pt SACs under high-temperature reduction treatments, but also enhances the hydrogen spillover process to facilitate the formation of more O<sub>V</sub> sites. During the reverse water-gas shift (RWGS) reaction, the enhanced amount of O<sub>V</sub> sites can increase CO<sub>2</sub> adsorption, while the Pt SACs can efficiently promote the activation and spillover of hydrogen. Their combined synergistic effects greatly improve its catalytic performance with a high turnover frequency (TOF) of 9289 h<sup>−1</sup> at 330°C and notable stability for over 200 h, surpassing those of Pt clusters and nanoparticles on TiO<sub>2−<i>x</i></sub>. This work provides a new avenue for the controllable synthesis of synergistic catalysts with SACs and O<sub>V</sub>, significantly advancing catalytic efficiency.</p></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 11\",\"pages\":\"3579 - 3588\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3011-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3011-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在支持物上构建单原子催化剂(SAC)和氧空位(OV)的协同催化对提高异相催化效率至关重要,但也面临着相当大的挑战。在此,我们开发了一种胺分子辅助原位锚定策略,通过控制胺与铂物种和 TiO2-x 的相互作用,有效地将铂 SAC 稳定在还原 TiO2(TiO2-x)的 OV 位点上。直接证据表明,铂SAC在OV上形成了Ptδ+-OV-Ti3+位点,并具有很强的金属支撑作用,这不仅防止了高温还原处理下铂SAC的烧结,还增强了氢溢出过程,促进了更多OV位点的形成。在反向水气变换(RWGS)反应过程中,OV 位点数量的增加可以增加对二氧化碳的吸附,而 Pt SACs 则能有效促进氢的活化和溢出。二者的协同作用大大提高了该催化剂的催化性能,在 330°C 温度下,其翻转频率(TOF)高达 9289 h-1,稳定性超过 200 h,超过了 TiO2-x 上的铂团簇和纳米颗粒。这项工作为可控合成具有 SACs 和 OV 的协同催化剂提供了一条新途径,大大提高了催化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pt single atoms in oxygen vacancies boost reverse water-gas shift reaction by enhancing hydrogen spillover

The construction of synergistic catalysis of single atom catalysts (SACs) and oxygen vacancies (OV) on supports is crucial for the enhancement of heterogeneous catalytic efficiency, yet presents considerable challenges. Herein, we have developed an amine-molecule-assisted in-situ anchoring strategy that effectively stabilizes Pt SACs on OV sites of reduced TiO2 (TiO2−x) by controlling the interaction of amine with Pt species and TiO2−x. Direct evidence indicates that Pt SACs are anchored on the OV with forming Ptδ+–OV–Ti3+ sites and strong metal-support interaction, which not only prevents the sintering of Pt SACs under high-temperature reduction treatments, but also enhances the hydrogen spillover process to facilitate the formation of more OV sites. During the reverse water-gas shift (RWGS) reaction, the enhanced amount of OV sites can increase CO2 adsorption, while the Pt SACs can efficiently promote the activation and spillover of hydrogen. Their combined synergistic effects greatly improve its catalytic performance with a high turnover frequency (TOF) of 9289 h−1 at 330°C and notable stability for over 200 h, surpassing those of Pt clusters and nanoparticles on TiO2−x. This work provides a new avenue for the controllable synthesis of synergistic catalysts with SACs and OV, significantly advancing catalytic efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Reaction-based small-molecule fluorescent probes for endoplasmic reticulum- and mitochondria-targeted biosensing and bioimaging Promising graphdiyne-based nanomaterials for environmental pollutant control Hydrogen embrittlement of retrogression-reaged 7xxx-series aluminum alloys—a comprehensive review Supramolecular glass: a new platform for ultralong phosphorescence Simultaneously achieving high sensitivity, low dark current and low detection limits in anti-perovskites towards X-ray detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1