{"title":"低阶值优化问题的改良莱文伯格-马夸特算法","authors":"Xiaochen Lv, Zhensheng Yu","doi":"10.1007/s12190-024-02140-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a modified Levenberg–Marquardt algorithm for Low Order Value Optimization problems(LOVO). In the algorithm, we obtain the search direction by a combination of LM steps and approximate LM steps, and solve the subproblems therein by QR decomposition or cholesky decomposition. We prove the global convergence of the algorithm theoretically and discuss the worst-case complexity of the algorithm. Numerical results show that the algorithm in this paper is superior in terms of number of iterations and computation time compared to both LM-LOVO and GN-LOVO algorithm.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"20 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified Levenberg–Marquardt algorithm for low order-value optimization problem\",\"authors\":\"Xiaochen Lv, Zhensheng Yu\",\"doi\":\"10.1007/s12190-024-02140-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a modified Levenberg–Marquardt algorithm for Low Order Value Optimization problems(LOVO). In the algorithm, we obtain the search direction by a combination of LM steps and approximate LM steps, and solve the subproblems therein by QR decomposition or cholesky decomposition. We prove the global convergence of the algorithm theoretically and discuss the worst-case complexity of the algorithm. Numerical results show that the algorithm in this paper is superior in terms of number of iterations and computation time compared to both LM-LOVO and GN-LOVO algorithm.</p>\",\"PeriodicalId\":15034,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computing\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02140-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02140-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A modified Levenberg–Marquardt algorithm for low order-value optimization problem
In this paper, we consider a modified Levenberg–Marquardt algorithm for Low Order Value Optimization problems(LOVO). In the algorithm, we obtain the search direction by a combination of LM steps and approximate LM steps, and solve the subproblems therein by QR decomposition or cholesky decomposition. We prove the global convergence of the algorithm theoretically and discuss the worst-case complexity of the algorithm. Numerical results show that the algorithm in this paper is superior in terms of number of iterations and computation time compared to both LM-LOVO and GN-LOVO algorithm.
期刊介绍:
JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.