讨论无条件稳定性指标在评估带火焰燃烧器热声质量方面的局限性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-23 DOI:10.1177/17568277241265433
Hamed F Ganji, Viktor Kornilov, Jeroen van Oijen, Ines Lopez Arteaga, Philip de Goey
{"title":"讨论无条件稳定性指标在评估带火焰燃烧器热声质量方面的局限性","authors":"Hamed F Ganji, Viktor Kornilov, Jeroen van Oijen, Ines Lopez Arteaga, Philip de Goey","doi":"10.1177/17568277241265433","DOIUrl":null,"url":null,"abstract":"Assessing the thermoacoustic performance of designed combustors, with a focus on the stability quality factor, is crucial. Thermoacoustic instability in combustion appliances arises from intricate interactions among unsteady combustion, heat transfer, and (maybe) acoustic modes within the system. Accurate prediction of system stability requires modeling all components, including the burner with flame. Traditionally, the burner in the presence of combustion is represented as an acoustically (active) two-port block with passive upstream and downstream acoustic terminations. The dispersion relation of the thermoacoustic system is commonly used for anticipating eigen-frequencies and assessing stability. However, practical scenarios often lack specific information about upstream and downstream terminations during development. This raises a critical question: How can the thermoacoustic performance of burners and their associated flames be evaluated without specified acoustics? This article addresses this question by exploring the concept of unconditional stability in a generic two-port thermoacoustic system. The unconditional stability criteria have been used as quality indicators in designing electrical devices. This rich toolbox has been introduced in thermoacoustics. We first scrutinize assumptions underlying two most known unconditional stability-based criteria called [Formula: see text] and [Formula: see text] factors, connecting them to the general thermoacoustic problems. Then, the application of these criteria in assessing the thermoacoustic quality of burners with flames are discussed. This investigation revealed that while they are able to accurately predict the histogram of unstable frequencies and critical frequency bands, their use as reliable indicators to assess thermoacoustic quality in burners are not recommended due to their mathematical limitations and high level of conservatism of these factors.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discussing the limitations of unconditional stability indicators in evaluating thermoacoustic quality of burners with flames\",\"authors\":\"Hamed F Ganji, Viktor Kornilov, Jeroen van Oijen, Ines Lopez Arteaga, Philip de Goey\",\"doi\":\"10.1177/17568277241265433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing the thermoacoustic performance of designed combustors, with a focus on the stability quality factor, is crucial. Thermoacoustic instability in combustion appliances arises from intricate interactions among unsteady combustion, heat transfer, and (maybe) acoustic modes within the system. Accurate prediction of system stability requires modeling all components, including the burner with flame. Traditionally, the burner in the presence of combustion is represented as an acoustically (active) two-port block with passive upstream and downstream acoustic terminations. The dispersion relation of the thermoacoustic system is commonly used for anticipating eigen-frequencies and assessing stability. However, practical scenarios often lack specific information about upstream and downstream terminations during development. This raises a critical question: How can the thermoacoustic performance of burners and their associated flames be evaluated without specified acoustics? This article addresses this question by exploring the concept of unconditional stability in a generic two-port thermoacoustic system. The unconditional stability criteria have been used as quality indicators in designing electrical devices. This rich toolbox has been introduced in thermoacoustics. We first scrutinize assumptions underlying two most known unconditional stability-based criteria called [Formula: see text] and [Formula: see text] factors, connecting them to the general thermoacoustic problems. Then, the application of these criteria in assessing the thermoacoustic quality of burners with flames are discussed. This investigation revealed that while they are able to accurately predict the histogram of unstable frequencies and critical frequency bands, their use as reliable indicators to assess thermoacoustic quality in burners are not recommended due to their mathematical limitations and high level of conservatism of these factors.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568277241265433\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277241265433","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

评估设计燃烧器的热声性能至关重要,重点是稳定性品质因数。燃烧设备中的热声不稳定性源于系统内不稳定燃烧、热传递和(可能)声学模式之间错综复杂的相互作用。要准确预测系统的稳定性,需要对所有组件进行建模,包括带火焰的燃烧器。传统上,存在燃烧的燃烧器被表示为一个声学(主动)双端口块,具有被动的上游和下游声学终端。热声系统的扩散关系通常用于预测特征频率和评估稳定性。然而,在开发过程中,实际方案往往缺乏有关上下游终端的具体信息。这就提出了一个关键问题:在没有特定声学参数的情况下,如何评估燃烧器及其相关火焰的热声性能?本文通过探讨一般双端口热声系统中的无条件稳定性概念来解决这一问题。无条件稳定性标准已被用作设计电气设备的质量指标。热声学中也引入了这一丰富的工具箱。我们首先仔细研究了两个最著名的基于非条件稳定性的标准,即[公式:见正文]和[公式:见正文]因子的基本假设,并将它们与一般热声问题联系起来。然后,讨论了这些标准在评估带火焰燃烧器热声质量中的应用。调查显示,虽然它们能够准确预测不稳定频率直方图和临界频率带,但由于其数学局限性和这些因素的高度保守性,不建议将它们用作评估燃烧器热声质量的可靠指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discussing the limitations of unconditional stability indicators in evaluating thermoacoustic quality of burners with flames
Assessing the thermoacoustic performance of designed combustors, with a focus on the stability quality factor, is crucial. Thermoacoustic instability in combustion appliances arises from intricate interactions among unsteady combustion, heat transfer, and (maybe) acoustic modes within the system. Accurate prediction of system stability requires modeling all components, including the burner with flame. Traditionally, the burner in the presence of combustion is represented as an acoustically (active) two-port block with passive upstream and downstream acoustic terminations. The dispersion relation of the thermoacoustic system is commonly used for anticipating eigen-frequencies and assessing stability. However, practical scenarios often lack specific information about upstream and downstream terminations during development. This raises a critical question: How can the thermoacoustic performance of burners and their associated flames be evaluated without specified acoustics? This article addresses this question by exploring the concept of unconditional stability in a generic two-port thermoacoustic system. The unconditional stability criteria have been used as quality indicators in designing electrical devices. This rich toolbox has been introduced in thermoacoustics. We first scrutinize assumptions underlying two most known unconditional stability-based criteria called [Formula: see text] and [Formula: see text] factors, connecting them to the general thermoacoustic problems. Then, the application of these criteria in assessing the thermoacoustic quality of burners with flames are discussed. This investigation revealed that while they are able to accurately predict the histogram of unstable frequencies and critical frequency bands, their use as reliable indicators to assess thermoacoustic quality in burners are not recommended due to their mathematical limitations and high level of conservatism of these factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1