清畅通络汤对克罗恩病肠纤维化的治疗作用:网络药理学、分子对接和实验验证

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL Drug Design, Development and Therapy Pub Date : 2024-07-25 DOI:10.2147/dddt.s458811
Yanan Li, Jingyi Hu, Ryan Au, Cheng Cheng, Feng Xu, Weiyang Li, Yuguang Wu, Yuan Cui, Lei Zhu, Hong Shen
{"title":"清畅通络汤对克罗恩病肠纤维化的治疗作用:网络药理学、分子对接和实验验证","authors":"Yanan Li, Jingyi Hu, Ryan Au, Cheng Cheng, Feng Xu, Weiyang Li, Yuguang Wu, Yuan Cui, Lei Zhu, Hong Shen","doi":"10.2147/dddt.s458811","DOIUrl":null,"url":null,"abstract":"<strong>Background:</strong> Qingchang Tongluo Decoction (QTF) is clinically used for the treatment of intestinal fibrosis in Crohn’s Disease (CD). However, the role of QTF in CD-associated fibrosis and its potential pharmacological mechanism remains unclear.<br/><strong>Purpose:</strong> The objective of this study was to elucidate the potential mechanism of QTF in treating CD-associated fibrosis, employing a combination of bioinformatics approaches — encompassing network pharmacology and molecular docking — complemented by experimental validation.<br/><strong>Methods:</strong> To investigate the material basis and potential protective mechanism of QTF, a network pharmacology analysis was conducted. The core components and targets of QTF underwent molecular docking analysis to corroborate the findings obtained from network pharmacology. In vitro, a colon fibrotic model was established by stimulating IEC-6 cells with 10 ng/mL of transforming growth factor(TGF-β 1). In vivo, an intestinal fibrosis model was induced in BALB/c mice by TNBS. The role of QTF in inhibiting the TGF-β 1/Smad signaling pathway was investigated through RT-qPCR, Western blotting, immunohistochemistry staining, and immunofluorescence staining.<br/><strong>Results:</strong> Network pharmacology analysis revealed that QTF could exert its protective effect. Bioinformatics analysis suggested that Flavone and Isoflavone might be the key components of the study. Additionally, AKT1, IL-6, TNF, and VEGFA were identified as potential therapeutic targets. Furthermore, experimental validation and molecular docking were employed to corroborate the results obtained from network pharmacology. RT-qPCR, Immunofluorescence, and Western blotting results demonstrated that QTF significantly improved colon function and inhibited pathological intestinal fibrosis in vivo and in vitro.<br/><strong>Conclusion:</strong> Through the application of network pharmacology, molecular docking, and experimental validation, QTF could be confirmed to inhibit the proliferation of intestinal fibroblasts associated with CD and reduce the expression of Collagen I and VEGFA. This effect is achieved through the attenuation of ECM accumulation, primarily via the inhibition of the TGF-β 1/Smad signaling pathway. <br/><br/>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic Effects of Qingchang Tongluo Decoction on Intestinal Fibrosis in Crohn’s Disease: Network Pharmacology, Molecular Docking and Experiment Validation\",\"authors\":\"Yanan Li, Jingyi Hu, Ryan Au, Cheng Cheng, Feng Xu, Weiyang Li, Yuguang Wu, Yuan Cui, Lei Zhu, Hong Shen\",\"doi\":\"10.2147/dddt.s458811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background:</strong> Qingchang Tongluo Decoction (QTF) is clinically used for the treatment of intestinal fibrosis in Crohn’s Disease (CD). However, the role of QTF in CD-associated fibrosis and its potential pharmacological mechanism remains unclear.<br/><strong>Purpose:</strong> The objective of this study was to elucidate the potential mechanism of QTF in treating CD-associated fibrosis, employing a combination of bioinformatics approaches — encompassing network pharmacology and molecular docking — complemented by experimental validation.<br/><strong>Methods:</strong> To investigate the material basis and potential protective mechanism of QTF, a network pharmacology analysis was conducted. The core components and targets of QTF underwent molecular docking analysis to corroborate the findings obtained from network pharmacology. In vitro, a colon fibrotic model was established by stimulating IEC-6 cells with 10 ng/mL of transforming growth factor(TGF-β 1). In vivo, an intestinal fibrosis model was induced in BALB/c mice by TNBS. The role of QTF in inhibiting the TGF-β 1/Smad signaling pathway was investigated through RT-qPCR, Western blotting, immunohistochemistry staining, and immunofluorescence staining.<br/><strong>Results:</strong> Network pharmacology analysis revealed that QTF could exert its protective effect. Bioinformatics analysis suggested that Flavone and Isoflavone might be the key components of the study. Additionally, AKT1, IL-6, TNF, and VEGFA were identified as potential therapeutic targets. Furthermore, experimental validation and molecular docking were employed to corroborate the results obtained from network pharmacology. RT-qPCR, Immunofluorescence, and Western blotting results demonstrated that QTF significantly improved colon function and inhibited pathological intestinal fibrosis in vivo and in vitro.<br/><strong>Conclusion:</strong> Through the application of network pharmacology, molecular docking, and experimental validation, QTF could be confirmed to inhibit the proliferation of intestinal fibroblasts associated with CD and reduce the expression of Collagen I and VEGFA. This effect is achieved through the attenuation of ECM accumulation, primarily via the inhibition of the TGF-β 1/Smad signaling pathway. <br/><br/>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/dddt.s458811\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/dddt.s458811","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:清畅通络汤(QTF)在临床上用于治疗克罗恩病(CD)的肠纤维化。目的:本研究旨在结合生物信息学方法--包括网络药理学和分子对接--并辅以实验验证,阐明清畅通络汤在治疗克罗恩病(CD)相关纤维化中的潜在机制:为了研究QTF的物质基础和潜在保护机制,我们进行了网络药理学分析。方法:为了研究 QTF 的物质基础和潜在保护机制,我们进行了网络药理学分析,并对 QTF 的核心成分和靶点进行了分子对接分析,以证实网络药理学的研究结果。在体外,用 10 ng/mL 转化生长因子(TGF-β 1)刺激 IEC-6 细胞,建立结肠纤维化模型。在体内,用 TNBS 诱导 BALB/c 小鼠建立肠纤维化模型。通过RT-qPCR、Western印迹、免疫组织化学染色和免疫荧光染色研究了QTF在抑制TGF-β 1/Smad信号通路中的作用:结果:网络药理学分析表明,QTF具有保护作用。生物信息学分析表明,黄酮和异黄酮可能是该研究的关键成分。此外,AKT1、IL-6、TNF 和 VEGFA 被确定为潜在的治疗靶点。此外,实验验证和分子对接也证实了网络药理学的结果。RT-qPCR、免疫荧光和Western印迹结果表明,QTF能显著改善体内和体外结肠功能,抑制病理性肠纤维化:结论:通过应用网络药理学、分子对接和实验验证,QTF 可抑制 CD 相关肠成纤维细胞的增殖,降低胶原 I 和血管内皮生长因子的表达。这种作用主要是通过抑制 TGF-β 1/Smad 信号通路来减少 ECM 的积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Therapeutic Effects of Qingchang Tongluo Decoction on Intestinal Fibrosis in Crohn’s Disease: Network Pharmacology, Molecular Docking and Experiment Validation
Background: Qingchang Tongluo Decoction (QTF) is clinically used for the treatment of intestinal fibrosis in Crohn’s Disease (CD). However, the role of QTF in CD-associated fibrosis and its potential pharmacological mechanism remains unclear.
Purpose: The objective of this study was to elucidate the potential mechanism of QTF in treating CD-associated fibrosis, employing a combination of bioinformatics approaches — encompassing network pharmacology and molecular docking — complemented by experimental validation.
Methods: To investigate the material basis and potential protective mechanism of QTF, a network pharmacology analysis was conducted. The core components and targets of QTF underwent molecular docking analysis to corroborate the findings obtained from network pharmacology. In vitro, a colon fibrotic model was established by stimulating IEC-6 cells with 10 ng/mL of transforming growth factor(TGF-β 1). In vivo, an intestinal fibrosis model was induced in BALB/c mice by TNBS. The role of QTF in inhibiting the TGF-β 1/Smad signaling pathway was investigated through RT-qPCR, Western blotting, immunohistochemistry staining, and immunofluorescence staining.
Results: Network pharmacology analysis revealed that QTF could exert its protective effect. Bioinformatics analysis suggested that Flavone and Isoflavone might be the key components of the study. Additionally, AKT1, IL-6, TNF, and VEGFA were identified as potential therapeutic targets. Furthermore, experimental validation and molecular docking were employed to corroborate the results obtained from network pharmacology. RT-qPCR, Immunofluorescence, and Western blotting results demonstrated that QTF significantly improved colon function and inhibited pathological intestinal fibrosis in vivo and in vitro.
Conclusion: Through the application of network pharmacology, molecular docking, and experimental validation, QTF could be confirmed to inhibit the proliferation of intestinal fibroblasts associated with CD and reduce the expression of Collagen I and VEGFA. This effect is achieved through the attenuation of ECM accumulation, primarily via the inhibition of the TGF-β 1/Smad signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
期刊最新文献
Comparison of Remimazolam and Propofol in Recovery of Elderly Outpatients Undergoing Gastrointestinal Endoscopy: A Randomized, Non-Inferiority Trial. Dauricine: Review of Pharmacological Activity. Copolymerized Polymers Based on Cyclodextrins and Cationic Groups Enhance Therapeutic Effect of Rebamipide in the N-Acetylcysteine-Treated Dry Eye Model. Deciphering the Dynamics of EGFR-TKI Resistance in Lung Cancer: Insights from Bibliometric Analysis. Follitropin Alpha versus Follitropin Beta in IVF/ICSI Cycle: A Retrospective Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1