Lukas Rimondini, Adam Kimberley, Sara A. O. Cousins
{"title":"栖息地丧失和隔离威胁波罗的海沿岸草地的特种植物区系","authors":"Lukas Rimondini, Adam Kimberley, Sara A. O. Cousins","doi":"10.1111/jvs.13290","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Questions</h3>\n \n <p>Baltic coastal meadows are ecologically unique habitats that have been severely impacted by habitat loss and environmental change. To determine the effects of habitat loss and isolation on their plant communities, we analysed the relationships between species richness and habitat size and amount. Because coastal meadows host species with a vast array of traits, we expected responses to vary between species groups.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Swedish Baltic coast.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We inventoried the presence of vascular plant species in twenty-eight 1-m<sup>2</sup> plots placed along edaphically defined transects in fifteen coastal meadows. We determined the richness of three species groups: all species, halophytes and inland grassland specialists. We then mapped the habitat for coastal grassland plants using GIS overlay analysis. Using this habitat map, we calculated two variables: “habitat size” and “habitat amount”. We tested correlations between species richness measures and habitat variables, as well as determining the distribution of species traits within meadows.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We recorded 174 plant species, of which 6 were halophytes and 35 were inland grassland specialists. Species traits coincided with edaphic sea-to-land gradients. Halophyte and inland grassland specialist richness were significantly correlated with both habitat variables (<i>r</i> = 0.52–0.71). No correlations were found with total species richness. Our habitat map showed that there are 8,900 ha of managed Baltic coastal meadow left in Sweden, mostly in the south.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Species traits and distribution play a major role in determining persistence in the face of habitat loss and environmental change. This is especially true for some halophyte populations, which are more susceptible to habitat size and isolation because of their specialisation. Furthermore, they risk being squeezed between the dual threats of encroaching succession and sea-level rise. Preventing habitat loss, restoring meadows and increasing connectivity is crucial for the persistence of specialist plant species.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"35 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.13290","citationCount":"0","resultStr":"{\"title\":\"Habitat loss and isolation threaten specialist flora in Baltic coastal meadows\",\"authors\":\"Lukas Rimondini, Adam Kimberley, Sara A. O. Cousins\",\"doi\":\"10.1111/jvs.13290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Questions</h3>\\n \\n <p>Baltic coastal meadows are ecologically unique habitats that have been severely impacted by habitat loss and environmental change. To determine the effects of habitat loss and isolation on their plant communities, we analysed the relationships between species richness and habitat size and amount. Because coastal meadows host species with a vast array of traits, we expected responses to vary between species groups.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Swedish Baltic coast.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We inventoried the presence of vascular plant species in twenty-eight 1-m<sup>2</sup> plots placed along edaphically defined transects in fifteen coastal meadows. We determined the richness of three species groups: all species, halophytes and inland grassland specialists. We then mapped the habitat for coastal grassland plants using GIS overlay analysis. Using this habitat map, we calculated two variables: “habitat size” and “habitat amount”. We tested correlations between species richness measures and habitat variables, as well as determining the distribution of species traits within meadows.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We recorded 174 plant species, of which 6 were halophytes and 35 were inland grassland specialists. Species traits coincided with edaphic sea-to-land gradients. Halophyte and inland grassland specialist richness were significantly correlated with both habitat variables (<i>r</i> = 0.52–0.71). No correlations were found with total species richness. Our habitat map showed that there are 8,900 ha of managed Baltic coastal meadow left in Sweden, mostly in the south.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Species traits and distribution play a major role in determining persistence in the face of habitat loss and environmental change. This is especially true for some halophyte populations, which are more susceptible to habitat size and isolation because of their specialisation. Furthermore, they risk being squeezed between the dual threats of encroaching succession and sea-level rise. Preventing habitat loss, restoring meadows and increasing connectivity is crucial for the persistence of specialist plant species.</p>\\n </section>\\n </div>\",\"PeriodicalId\":49965,\"journal\":{\"name\":\"Journal of Vegetation Science\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.13290\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vegetation Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13290\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13290","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Habitat loss and isolation threaten specialist flora in Baltic coastal meadows
Questions
Baltic coastal meadows are ecologically unique habitats that have been severely impacted by habitat loss and environmental change. To determine the effects of habitat loss and isolation on their plant communities, we analysed the relationships between species richness and habitat size and amount. Because coastal meadows host species with a vast array of traits, we expected responses to vary between species groups.
Location
Swedish Baltic coast.
Methods
We inventoried the presence of vascular plant species in twenty-eight 1-m2 plots placed along edaphically defined transects in fifteen coastal meadows. We determined the richness of three species groups: all species, halophytes and inland grassland specialists. We then mapped the habitat for coastal grassland plants using GIS overlay analysis. Using this habitat map, we calculated two variables: “habitat size” and “habitat amount”. We tested correlations between species richness measures and habitat variables, as well as determining the distribution of species traits within meadows.
Results
We recorded 174 plant species, of which 6 were halophytes and 35 were inland grassland specialists. Species traits coincided with edaphic sea-to-land gradients. Halophyte and inland grassland specialist richness were significantly correlated with both habitat variables (r = 0.52–0.71). No correlations were found with total species richness. Our habitat map showed that there are 8,900 ha of managed Baltic coastal meadow left in Sweden, mostly in the south.
Conclusions
Species traits and distribution play a major role in determining persistence in the face of habitat loss and environmental change. This is especially true for some halophyte populations, which are more susceptible to habitat size and isolation because of their specialisation. Furthermore, they risk being squeezed between the dual threats of encroaching succession and sea-level rise. Preventing habitat loss, restoring meadows and increasing connectivity is crucial for the persistence of specialist plant species.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.