用于初级锌-空气电池的聚苯胺掺 N 碳表面工程

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-07-23 DOI:10.1002/cnma.202400361
B. Sc. Ángel Chávez-Hernández, Dr. Carlos M. Ramos-Castillo, Prof. Amelia Olivas, Dr. Anabel D. Delgado, Prof. Minerva Guerra-Balcázar, Prof. Lorena Álvarez-Contreras, Dr. Noé Arjona
{"title":"用于初级锌-空气电池的聚苯胺掺 N 碳表面工程","authors":"B. Sc. Ángel Chávez-Hernández,&nbsp;Dr. Carlos M. Ramos-Castillo,&nbsp;Prof. Amelia Olivas,&nbsp;Dr. Anabel D. Delgado,&nbsp;Prof. Minerva Guerra-Balcázar,&nbsp;Prof. Lorena Álvarez-Contreras,&nbsp;Dr. Noé Arjona","doi":"10.1002/cnma.202400361","DOIUrl":null,"url":null,"abstract":"<p>Zinc-air batteries (ZABs) with metal-free cathodes are considered environmentally friendly and cost-effective. However, more active and durable catalysts are required for this purpose. Herein, polyaniline (PANI)-derived carbon materials were obtained to boost the oxygen reduction reaction (ORR) and, consequently, the performance of a primary ZAB. The developed porous N-doped carbon (NDC) materials were engineered by varying the polymerization time and calcination temperature (500–900 °C). SEM micrographs and BET surface areas showed that the polymerization of aniline under cold conditions (5 °C) at 6, 8, or 24 h did not have a significant effect on the morphology or surface area. The fibrous structure of PANI was engineered by temperature, resulting in a progressive increase in the surface area until a three-dimensional porous structure was achieved at 900 °C with the highest area of 601.9 m<sup>2</sup> g<sup>−1</sup>. The surface doping of nitrogen species shifted from PANI-rich N species to enriched graphitic N from 12.69 % (500 °C) to 24.26 % at 900 °C. The NDC 900 °C presented a voltage of 1.4 V and power density of 56 mW cm<sup>−2</sup> (only 7 mW cm<sup>−2</sup> lower than that of Pt/C). The results demonstrate that this material is an excellent candidate for high-performance primary ZABs.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Engineering of N-Doped Carbon Derived from Polyaniline for Primary Zinc-Air Batteries\",\"authors\":\"B. Sc. Ángel Chávez-Hernández,&nbsp;Dr. Carlos M. Ramos-Castillo,&nbsp;Prof. Amelia Olivas,&nbsp;Dr. Anabel D. Delgado,&nbsp;Prof. Minerva Guerra-Balcázar,&nbsp;Prof. Lorena Álvarez-Contreras,&nbsp;Dr. Noé Arjona\",\"doi\":\"10.1002/cnma.202400361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zinc-air batteries (ZABs) with metal-free cathodes are considered environmentally friendly and cost-effective. However, more active and durable catalysts are required for this purpose. Herein, polyaniline (PANI)-derived carbon materials were obtained to boost the oxygen reduction reaction (ORR) and, consequently, the performance of a primary ZAB. The developed porous N-doped carbon (NDC) materials were engineered by varying the polymerization time and calcination temperature (500–900 °C). SEM micrographs and BET surface areas showed that the polymerization of aniline under cold conditions (5 °C) at 6, 8, or 24 h did not have a significant effect on the morphology or surface area. The fibrous structure of PANI was engineered by temperature, resulting in a progressive increase in the surface area until a three-dimensional porous structure was achieved at 900 °C with the highest area of 601.9 m<sup>2</sup> g<sup>−1</sup>. The surface doping of nitrogen species shifted from PANI-rich N species to enriched graphitic N from 12.69 % (500 °C) to 24.26 % at 900 °C. The NDC 900 °C presented a voltage of 1.4 V and power density of 56 mW cm<sup>−2</sup> (only 7 mW cm<sup>−2</sup> lower than that of Pt/C). The results demonstrate that this material is an excellent candidate for high-performance primary ZABs.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400361\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400361","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用无金属阴极的锌空气电池(ZAB)被认为既环保又经济。然而,为此需要更活跃、更耐用的催化剂。在此,我们获得了由聚苯胺(PANI)衍生的碳材料,以促进氧还原反应(ORR),从而提高一次锌空气电池的性能。通过改变聚合时间和煅烧温度(500-900ºC),开发出了多孔 N 掺杂碳 (NDC) 材料。SEM 显微图片和 BET 表面积显示,苯胺在低温条件(5 °C)下聚合 6、8 或 24 小时对形貌或表面积没有显著影响。PANI 的纤维结构受温度影响,表面积逐渐增大,直到 900°C 时形成三维多孔结构,最高面积为 601.9 m2 g-1。氮元素的表面掺杂从富含 PANI 的氮元素转变为富含石墨的氮元素,从 12.69%(500°C)上升到 900°C 时的 24.26%。NDC 900°C 时的电压为 1.4 V,功率密度为 56 mW cm-2(仅比 Pt/C 低 7 mW cm-2)。结果表明,这种材料是高性能初级 ZAB 的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface Engineering of N-Doped Carbon Derived from Polyaniline for Primary Zinc-Air Batteries

Zinc-air batteries (ZABs) with metal-free cathodes are considered environmentally friendly and cost-effective. However, more active and durable catalysts are required for this purpose. Herein, polyaniline (PANI)-derived carbon materials were obtained to boost the oxygen reduction reaction (ORR) and, consequently, the performance of a primary ZAB. The developed porous N-doped carbon (NDC) materials were engineered by varying the polymerization time and calcination temperature (500–900 °C). SEM micrographs and BET surface areas showed that the polymerization of aniline under cold conditions (5 °C) at 6, 8, or 24 h did not have a significant effect on the morphology or surface area. The fibrous structure of PANI was engineered by temperature, resulting in a progressive increase in the surface area until a three-dimensional porous structure was achieved at 900 °C with the highest area of 601.9 m2 g−1. The surface doping of nitrogen species shifted from PANI-rich N species to enriched graphitic N from 12.69 % (500 °C) to 24.26 % at 900 °C. The NDC 900 °C presented a voltage of 1.4 V and power density of 56 mW cm−2 (only 7 mW cm−2 lower than that of Pt/C). The results demonstrate that this material is an excellent candidate for high-performance primary ZABs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: Trichosanthes Cucumerina Derived Activated Carbon: The Potential Electrode material for High Energy Symmetric Supercapacitor (ChemNanoMat 12/2024) Front Cover: Single Source Precursor Path to 2D Materials: A Case Study of Solution-Processed Molybdenum-Rich MoSe2-x Ultrathin Nanosheets (ChemNanoMat 11/2024) Facile Fabrication of LaFeO3 Supported Pd Nanoparticles as Highly Effective Heterogeneous Catalyst for Suzuki–Miyaura Coupling Reaction Effect of Electric Field on Carbon Encapsulation and Catalytic Activity of Pd for Efficient Formic Acid Decomposition Two-Dimensional Metal Covalent Organic Polymers with Dirhodium(II) Photoreduction Centers for Efficient Nitrogen Fixation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1