离散形态神经网络

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-25 DOI:10.1137/23m1598477
Diego Marcondes, Junior Barrera
{"title":"离散形态神经网络","authors":"Diego Marcondes, Junior Barrera","doi":"10.1137/23m1598477","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1650-1689, September 2024. <br/> Abstract.A classical approach to designing binary image operators is mathematical morphology (MM). We propose the Discrete Morphological Neural Networks (DMNN) for binary image analysis to represent W-operators and estimate them via machine learning. A DMNN architecture, which is represented by a morphological computational graph, is designed as in the classical heuristic design of morphological operators, in which the designer should combine a set of MM operators and Boolean operations based on prior information and theoretical knowledge. Then, once the architecture is fixed, instead of adjusting its parameters (i.e., structuring elements or maximal intervals) by hand, we propose a lattice descent algorithm (LDA) to train these parameters based on a sample of input and output images under the usual machine learning approach. We also propose a stochastic version of the LDA that is more efficient, is scalable, and can obtain small error in practical problems. The class represented by a DMNN can be quite general or specialized according to expected properties of the target operator, i.e., prior information, and the semantic expressed by algebraic properties of classes of operators is a differential relative to other methods. The main contribution of this paper is the merger of the two main paradigms for designing morphological operators: classical heuristic design and automatic design via machine learning. As a proof-of-concept, we apply the DMNN to recognize the boundary of digits with noise, and we discuss many topics for future research.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Morphological Neural Networks\",\"authors\":\"Diego Marcondes, Junior Barrera\",\"doi\":\"10.1137/23m1598477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1650-1689, September 2024. <br/> Abstract.A classical approach to designing binary image operators is mathematical morphology (MM). We propose the Discrete Morphological Neural Networks (DMNN) for binary image analysis to represent W-operators and estimate them via machine learning. A DMNN architecture, which is represented by a morphological computational graph, is designed as in the classical heuristic design of morphological operators, in which the designer should combine a set of MM operators and Boolean operations based on prior information and theoretical knowledge. Then, once the architecture is fixed, instead of adjusting its parameters (i.e., structuring elements or maximal intervals) by hand, we propose a lattice descent algorithm (LDA) to train these parameters based on a sample of input and output images under the usual machine learning approach. We also propose a stochastic version of the LDA that is more efficient, is scalable, and can obtain small error in practical problems. The class represented by a DMNN can be quite general or specialized according to expected properties of the target operator, i.e., prior information, and the semantic expressed by algebraic properties of classes of operators is a differential relative to other methods. The main contribution of this paper is the merger of the two main paradigms for designing morphological operators: classical heuristic design and automatic design via machine learning. As a proof-of-concept, we apply the DMNN to recognize the boundary of digits with noise, and we discuss many topics for future research.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1598477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1598477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 影像科学期刊》第 17 卷第 3 期第 1650-1689 页,2024 年 9 月。 摘要:设计二值图像算子的经典方法是数学形态学(MM)。我们提出了用于二值图像分析的离散形态神经网络(DMNN)来表示 W 运算符,并通过机器学习对其进行估计。DMNN 体系结构由形态计算图表示,其设计与形态算子的经典启发式设计类似,设计者应根据先验信息和理论知识将一组 MM 算子和布尔运算结合起来。然后,一旦结构固定下来,我们就不需要手工调整其参数(即结构元素或最大区间),而是根据通常的机器学习方法,基于输入和输出图像样本,提出一种网格下降算法(LDA)来训练这些参数。我们还提出了一种随机版本的 LDA,它效率更高、可扩展,而且在实际问题中误差很小。根据目标算子的预期属性(即先验信息),DMNN 所代表的类可以是非常通用的,也可以是专门化的,算子类的代数属性所表达的语义是相对于其他方法的一种差异。本文的主要贡献在于合并了设计形态运算符的两种主要范式:经典的启发式设计和通过机器学习的自动设计。作为概念验证,我们将 DMNN 应用于识别有噪声的数字边界,并讨论了未来研究的许多课题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete Morphological Neural Networks
SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1650-1689, September 2024.
Abstract.A classical approach to designing binary image operators is mathematical morphology (MM). We propose the Discrete Morphological Neural Networks (DMNN) for binary image analysis to represent W-operators and estimate them via machine learning. A DMNN architecture, which is represented by a morphological computational graph, is designed as in the classical heuristic design of morphological operators, in which the designer should combine a set of MM operators and Boolean operations based on prior information and theoretical knowledge. Then, once the architecture is fixed, instead of adjusting its parameters (i.e., structuring elements or maximal intervals) by hand, we propose a lattice descent algorithm (LDA) to train these parameters based on a sample of input and output images under the usual machine learning approach. We also propose a stochastic version of the LDA that is more efficient, is scalable, and can obtain small error in practical problems. The class represented by a DMNN can be quite general or specialized according to expected properties of the target operator, i.e., prior information, and the semantic expressed by algebraic properties of classes of operators is a differential relative to other methods. The main contribution of this paper is the merger of the two main paradigms for designing morphological operators: classical heuristic design and automatic design via machine learning. As a proof-of-concept, we apply the DMNN to recognize the boundary of digits with noise, and we discuss many topics for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1