用改进方法评估深煤层瓦斯含量及其地质控制因素

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Frontiers of Earth Science Pub Date : 2024-07-23 DOI:10.1007/s11707-024-1103-4
Haiqi Li, Shida Chen, Dazhen Tang, Shuling Tang, Jiaosheng Yang
{"title":"用改进方法评估深煤层瓦斯含量及其地质控制因素","authors":"Haiqi Li, Shida Chen, Dazhen Tang, Shuling Tang, Jiaosheng Yang","doi":"10.1007/s11707-024-1103-4","DOIUrl":null,"url":null,"abstract":"<p>An improved evaluation method for estimating gas content during the inversion process of deep-burial coal was established based on the on-site natural desorption curves. The accuracy of the US Bureau of Mines (USBM), Polynomial fitting, Amoco, and the improved evaluation methods in the predicting of lost gas volume in deep seams in the Mabidong Block of the Qinshui Basin were then compared. Furthermore, the calculation errors of these different methods in simulating lost gas content based on coring time were compared. A newly established nonlinear equation was developed to estimate the minimum error value, by controlling the lost time within 16 min, the related errors can be reduced. The improved evaluation was shown to accurately and rapidly predict the gas content in deep seams. The results show that the deep coal bed methane accumulation is influenced by various factors, including geological structure, hydrodynamic conditions, roof lithology, and coalification. Reverse faults and weak groundwater runoff can hinder the escape of methane, and these factors should be considered in the future exploration and development of coalbed methane.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":"50 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas content evaluation in deep coal seam with an improved method and its geological controls\",\"authors\":\"Haiqi Li, Shida Chen, Dazhen Tang, Shuling Tang, Jiaosheng Yang\",\"doi\":\"10.1007/s11707-024-1103-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An improved evaluation method for estimating gas content during the inversion process of deep-burial coal was established based on the on-site natural desorption curves. The accuracy of the US Bureau of Mines (USBM), Polynomial fitting, Amoco, and the improved evaluation methods in the predicting of lost gas volume in deep seams in the Mabidong Block of the Qinshui Basin were then compared. Furthermore, the calculation errors of these different methods in simulating lost gas content based on coring time were compared. A newly established nonlinear equation was developed to estimate the minimum error value, by controlling the lost time within 16 min, the related errors can be reduced. The improved evaluation was shown to accurately and rapidly predict the gas content in deep seams. The results show that the deep coal bed methane accumulation is influenced by various factors, including geological structure, hydrodynamic conditions, roof lithology, and coalification. Reverse faults and weak groundwater runoff can hinder the escape of methane, and these factors should be considered in the future exploration and development of coalbed methane.</p>\",\"PeriodicalId\":48927,\"journal\":{\"name\":\"Frontiers of Earth Science\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11707-024-1103-4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-024-1103-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

根据现场自然解吸曲线,建立了深埋煤反演过程中估算瓦斯含量的改进评价方法。然后比较了美国矿业局(USBM)、多项式拟合、阿莫科和改进的评估方法在预测沁水盆地马壁洞区块深部煤层瓦斯损失量方面的准确性。此外,还比较了这些不同方法根据取芯时间模拟失气量的计算误差。建立了一个新的非线性方程来估算最小误差值,通过将损失时间控制在 16 分钟内,可以减少相关误差。结果表明,改进后的评估能准确、快速地预测深煤层的瓦斯含量。结果表明,深部煤层瓦斯积聚受多种因素影响,包括地质构造、水动力条件、顶板岩性和煤化作用。逆断层和弱地下水径流会阻碍煤层气的逸出,在未来的煤层气勘探和开发中应考虑这些因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas content evaluation in deep coal seam with an improved method and its geological controls

An improved evaluation method for estimating gas content during the inversion process of deep-burial coal was established based on the on-site natural desorption curves. The accuracy of the US Bureau of Mines (USBM), Polynomial fitting, Amoco, and the improved evaluation methods in the predicting of lost gas volume in deep seams in the Mabidong Block of the Qinshui Basin were then compared. Furthermore, the calculation errors of these different methods in simulating lost gas content based on coring time were compared. A newly established nonlinear equation was developed to estimate the minimum error value, by controlling the lost time within 16 min, the related errors can be reduced. The improved evaluation was shown to accurately and rapidly predict the gas content in deep seams. The results show that the deep coal bed methane accumulation is influenced by various factors, including geological structure, hydrodynamic conditions, roof lithology, and coalification. Reverse faults and weak groundwater runoff can hinder the escape of methane, and these factors should be considered in the future exploration and development of coalbed methane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Earth Science
Frontiers of Earth Science GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
5.00%
发文量
627
期刊介绍: Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities
期刊最新文献
Case studies of hailstorms in Shandong Province using hail size discrimination algorithm based on dual Polarimetric parameters Experimental analysis of dust deposition and physical weathering intensity in the Gobi Desert Sedimentary architecture of a sandy braided river with seasonal hydrodynamic variations: insights from the Permian Lower Shihezi Formation, Ordos Basin, China Projected changes of runoff in the Upper Yellow River Basin under shared socioeconomic pathways Applying 3D geological modeling to predict favorable areas for coalbed methane accumulation: a case study in the Qinshui Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1