{"title":"TM-fuzzer:通过交通管理对自动驾驶系统进行模糊测试","authors":"Shenghao Lin, Fansong Chen, Laile Xi, Gaosheng Wang, Rongrong Xi, Yuyan Sun, Hongsong Zhu","doi":"10.1007/s10515-024-00461-w","DOIUrl":null,"url":null,"abstract":"<div><p>Simulation testing of Autonomous Driving Systems (ADS) is crucial for ensuring the safety of autonomous vehicles. Currently, scenarios searched by ADS simulation testing tools are less likely to expose ADS issues and highly similar. In this paper, we propose TM-fuzzer, a novel approach for searching ADS test scenarios, which utilizes real-time traffic management and diversity analysis to search security-critical and unique scenarios within the infinite scenario space. TM-fuzzer dynamically manages traffic flow by manipulating non-player characters near autonomous vehicle throughout the simulation process to enhance the efficiency of test scenarios. Additionally, the TM-fuzzer utilizes clustering analysis on vehicle trajectory graphs within scenarios to increase the diversity of test scenarios. Compared to the baseline, the TM-fuzzer identified 29 unique violated scenarios more than four times faster and enhanced the incidence of ADS-caused violations by 26.26%. Experiments suggest that the TM-fuzzer demonstrates improved efficiency and accuracy.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"31 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TM-fuzzer: fuzzing autonomous driving systems through traffic management\",\"authors\":\"Shenghao Lin, Fansong Chen, Laile Xi, Gaosheng Wang, Rongrong Xi, Yuyan Sun, Hongsong Zhu\",\"doi\":\"10.1007/s10515-024-00461-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simulation testing of Autonomous Driving Systems (ADS) is crucial for ensuring the safety of autonomous vehicles. Currently, scenarios searched by ADS simulation testing tools are less likely to expose ADS issues and highly similar. In this paper, we propose TM-fuzzer, a novel approach for searching ADS test scenarios, which utilizes real-time traffic management and diversity analysis to search security-critical and unique scenarios within the infinite scenario space. TM-fuzzer dynamically manages traffic flow by manipulating non-player characters near autonomous vehicle throughout the simulation process to enhance the efficiency of test scenarios. Additionally, the TM-fuzzer utilizes clustering analysis on vehicle trajectory graphs within scenarios to increase the diversity of test scenarios. Compared to the baseline, the TM-fuzzer identified 29 unique violated scenarios more than four times faster and enhanced the incidence of ADS-caused violations by 26.26%. Experiments suggest that the TM-fuzzer demonstrates improved efficiency and accuracy.</p></div>\",\"PeriodicalId\":55414,\"journal\":{\"name\":\"Automated Software Engineering\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10515-024-00461-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-024-00461-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
TM-fuzzer: fuzzing autonomous driving systems through traffic management
Simulation testing of Autonomous Driving Systems (ADS) is crucial for ensuring the safety of autonomous vehicles. Currently, scenarios searched by ADS simulation testing tools are less likely to expose ADS issues and highly similar. In this paper, we propose TM-fuzzer, a novel approach for searching ADS test scenarios, which utilizes real-time traffic management and diversity analysis to search security-critical and unique scenarios within the infinite scenario space. TM-fuzzer dynamically manages traffic flow by manipulating non-player characters near autonomous vehicle throughout the simulation process to enhance the efficiency of test scenarios. Additionally, the TM-fuzzer utilizes clustering analysis on vehicle trajectory graphs within scenarios to increase the diversity of test scenarios. Compared to the baseline, the TM-fuzzer identified 29 unique violated scenarios more than four times faster and enhanced the incidence of ADS-caused violations by 26.26%. Experiments suggest that the TM-fuzzer demonstrates improved efficiency and accuracy.
期刊介绍:
This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes.
Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.