Matteo Petris, Claudia Archetti, Diego Cattaruzza, Maxime Ogier, Frédéric Semet
{"title":"商品受限的分送车辆路由问题的性能保证启发式","authors":"Matteo Petris, Claudia Archetti, Diego Cattaruzza, Maxime Ogier, Frédéric Semet","doi":"10.1002/net.22238","DOIUrl":null,"url":null,"abstract":"The commodity constrained split delivery vehicle routing problem (C‐SDVRP) is a routing problem where customer demands are composed of multiple commodities. A fleet of capacitated vehicles must serve customer demands in a way that minimizes the total routing costs. Vehicles can transport any set of commodities and customers are allowed to be visited multiple times. However, the demand for a single commodity must be delivered by one vehicle only. In this work, we developed a heuristic with a performance guarantee to solve the C‐SDVRP. The proposed heuristic is based on a set covering formulation, where the exponentially‐many variables correspond to routes. First, a subset of the variables is obtained by solving the linear relaxation of the formulation by means of a column generation approach which embeds a new pricing heuristic aimed to reduce the computational time. Solving the linear relaxation gives a valid lower bound used as a performance guarantee for the heuristic. Then, we devise a restricted master heuristic to provide good upper bounds: the formulation is restricted to the subset of variables found so far and solved as an integer program with a commercial solver. A local search based on a mathematical programming operator is applied to improve the solution. We test the heuristic algorithm on benchmark instances from the literature. The comparison with the state‐of‐the‐art heuristics for solving the C‐SDVRP shows that our approach significantly improves the solution time, while keeping a comparable solution quality and improving some best‐known solutions. In addition, our approach is able to solve large instances with 100 customers and six commodities, and also provides very good quality lower bounds. Furthermore, an instance of the C‐SDVRP can be transformed into a CVRP instance by simply duplicating each customer as many times as the requested commodities and by assigning as demand the demand of the single commodity. Hence, we compare heuristics for the C‐SDVRP against the state‐of‐the‐art heuristic for the Capacitated Vehicle Routing Problem (CVRP). The latter approach revealed to have the best performance. However, our approach provides solutions of comparable quality and has the interest of providing a performance guarantee.","PeriodicalId":54734,"journal":{"name":"Networks","volume":"49 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A heuristic with a performance guarantee for the commodity constrained split delivery vehicle routing problem\",\"authors\":\"Matteo Petris, Claudia Archetti, Diego Cattaruzza, Maxime Ogier, Frédéric Semet\",\"doi\":\"10.1002/net.22238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The commodity constrained split delivery vehicle routing problem (C‐SDVRP) is a routing problem where customer demands are composed of multiple commodities. A fleet of capacitated vehicles must serve customer demands in a way that minimizes the total routing costs. Vehicles can transport any set of commodities and customers are allowed to be visited multiple times. However, the demand for a single commodity must be delivered by one vehicle only. In this work, we developed a heuristic with a performance guarantee to solve the C‐SDVRP. The proposed heuristic is based on a set covering formulation, where the exponentially‐many variables correspond to routes. First, a subset of the variables is obtained by solving the linear relaxation of the formulation by means of a column generation approach which embeds a new pricing heuristic aimed to reduce the computational time. Solving the linear relaxation gives a valid lower bound used as a performance guarantee for the heuristic. Then, we devise a restricted master heuristic to provide good upper bounds: the formulation is restricted to the subset of variables found so far and solved as an integer program with a commercial solver. A local search based on a mathematical programming operator is applied to improve the solution. We test the heuristic algorithm on benchmark instances from the literature. The comparison with the state‐of‐the‐art heuristics for solving the C‐SDVRP shows that our approach significantly improves the solution time, while keeping a comparable solution quality and improving some best‐known solutions. In addition, our approach is able to solve large instances with 100 customers and six commodities, and also provides very good quality lower bounds. Furthermore, an instance of the C‐SDVRP can be transformed into a CVRP instance by simply duplicating each customer as many times as the requested commodities and by assigning as demand the demand of the single commodity. Hence, we compare heuristics for the C‐SDVRP against the state‐of‐the‐art heuristic for the Capacitated Vehicle Routing Problem (CVRP). The latter approach revealed to have the best performance. However, our approach provides solutions of comparable quality and has the interest of providing a performance guarantee.\",\"PeriodicalId\":54734,\"journal\":{\"name\":\"Networks\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/net.22238\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22238","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A heuristic with a performance guarantee for the commodity constrained split delivery vehicle routing problem
The commodity constrained split delivery vehicle routing problem (C‐SDVRP) is a routing problem where customer demands are composed of multiple commodities. A fleet of capacitated vehicles must serve customer demands in a way that minimizes the total routing costs. Vehicles can transport any set of commodities and customers are allowed to be visited multiple times. However, the demand for a single commodity must be delivered by one vehicle only. In this work, we developed a heuristic with a performance guarantee to solve the C‐SDVRP. The proposed heuristic is based on a set covering formulation, where the exponentially‐many variables correspond to routes. First, a subset of the variables is obtained by solving the linear relaxation of the formulation by means of a column generation approach which embeds a new pricing heuristic aimed to reduce the computational time. Solving the linear relaxation gives a valid lower bound used as a performance guarantee for the heuristic. Then, we devise a restricted master heuristic to provide good upper bounds: the formulation is restricted to the subset of variables found so far and solved as an integer program with a commercial solver. A local search based on a mathematical programming operator is applied to improve the solution. We test the heuristic algorithm on benchmark instances from the literature. The comparison with the state‐of‐the‐art heuristics for solving the C‐SDVRP shows that our approach significantly improves the solution time, while keeping a comparable solution quality and improving some best‐known solutions. In addition, our approach is able to solve large instances with 100 customers and six commodities, and also provides very good quality lower bounds. Furthermore, an instance of the C‐SDVRP can be transformed into a CVRP instance by simply duplicating each customer as many times as the requested commodities and by assigning as demand the demand of the single commodity. Hence, we compare heuristics for the C‐SDVRP against the state‐of‐the‐art heuristic for the Capacitated Vehicle Routing Problem (CVRP). The latter approach revealed to have the best performance. However, our approach provides solutions of comparable quality and has the interest of providing a performance guarantee.
期刊介绍:
Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context.
The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics.
Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.