Francesco Chirianni, Giuseppe Vairo, Michele Marino
{"title":"通过硅学设计工具研究挤压机几何形状和生物墨水类型对挤压式生物打印的影响","authors":"Francesco Chirianni, Giuseppe Vairo, Michele Marino","doi":"10.1007/s11012-024-01862-7","DOIUrl":null,"url":null,"abstract":"<div><p>Planning a smooth-running and effective extrusion-based bioprinting process is a challenging endeavor due to the intricate interplay among process variables (e.g., printing pressure, nozzle diameter, extrusion velocity, and mass flow rate). <i>A priori</i> predicting how process variables relate each other is complex due to both the non-Newtonian response of bio-inks and the extruder geometries. In addition, ensuring high cell viability is of paramount importance, as bioprinting procedures expose cells to stresses that can potentially induce mechanobiological damage. Currently, in laboratory settings, bioprinting planning is often conducted through expensive and time-consuming trial-and-error procedures. In this context, an in silico strategy has been recently proposed by the authors for a clear and streamlined pathway towards bioprinting process planning (Chirianni et al. in Comput Methods Appl Mech Eng 419:116685, 2024. https://doi.org/10.1016/j.cma.2023.116685). The aim of this work is to investigate on the influence of bio-ink polymer type and of cartridge-nozzle connection shape on the setting of key process variables by adopting such in silico strategy. In detail, combinations of two different bio-inks and three different extruder geometries are considered. Nomograms are built as graphical fast design tools, thus informing how the printing pressure, the mass flow rate and the cell viability vary with extrusion velocity and nozzle diameter.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 8","pages":"1285 - 1299"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01862-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of extruder geometry and bio-ink type in extrusion-based bioprinting via an in silico design tool\",\"authors\":\"Francesco Chirianni, Giuseppe Vairo, Michele Marino\",\"doi\":\"10.1007/s11012-024-01862-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Planning a smooth-running and effective extrusion-based bioprinting process is a challenging endeavor due to the intricate interplay among process variables (e.g., printing pressure, nozzle diameter, extrusion velocity, and mass flow rate). <i>A priori</i> predicting how process variables relate each other is complex due to both the non-Newtonian response of bio-inks and the extruder geometries. In addition, ensuring high cell viability is of paramount importance, as bioprinting procedures expose cells to stresses that can potentially induce mechanobiological damage. Currently, in laboratory settings, bioprinting planning is often conducted through expensive and time-consuming trial-and-error procedures. In this context, an in silico strategy has been recently proposed by the authors for a clear and streamlined pathway towards bioprinting process planning (Chirianni et al. in Comput Methods Appl Mech Eng 419:116685, 2024. https://doi.org/10.1016/j.cma.2023.116685). The aim of this work is to investigate on the influence of bio-ink polymer type and of cartridge-nozzle connection shape on the setting of key process variables by adopting such in silico strategy. In detail, combinations of two different bio-inks and three different extruder geometries are considered. Nomograms are built as graphical fast design tools, thus informing how the printing pressure, the mass flow rate and the cell viability vary with extrusion velocity and nozzle diameter.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 8\",\"pages\":\"1285 - 1299\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11012-024-01862-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01862-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01862-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Influence of extruder geometry and bio-ink type in extrusion-based bioprinting via an in silico design tool
Planning a smooth-running and effective extrusion-based bioprinting process is a challenging endeavor due to the intricate interplay among process variables (e.g., printing pressure, nozzle diameter, extrusion velocity, and mass flow rate). A priori predicting how process variables relate each other is complex due to both the non-Newtonian response of bio-inks and the extruder geometries. In addition, ensuring high cell viability is of paramount importance, as bioprinting procedures expose cells to stresses that can potentially induce mechanobiological damage. Currently, in laboratory settings, bioprinting planning is often conducted through expensive and time-consuming trial-and-error procedures. In this context, an in silico strategy has been recently proposed by the authors for a clear and streamlined pathway towards bioprinting process planning (Chirianni et al. in Comput Methods Appl Mech Eng 419:116685, 2024. https://doi.org/10.1016/j.cma.2023.116685). The aim of this work is to investigate on the influence of bio-ink polymer type and of cartridge-nozzle connection shape on the setting of key process variables by adopting such in silico strategy. In detail, combinations of two different bio-inks and three different extruder geometries are considered. Nomograms are built as graphical fast design tools, thus informing how the printing pressure, the mass flow rate and the cell viability vary with extrusion velocity and nozzle diameter.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.