{"title":"快速电子对六氟乙酰丙酮的直接影响","authors":"S. I. Vlasov, E. M. Kholodkova, A. V. Ponomarev","doi":"10.1134/s0018143924700371","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The radiolysis of liquid and boiling hexafluoroacetylacetone has been studied. The structure of the main radiolysis products indicates the predominance of C–CF<sub>3</sub> and C–F bond cleavages. Ten compounds including monoketones, trifluoroacetic acid, keto alcohols, and tautomeric tetraketones were formed. Carbon monoxide was the main gaseous product, and its yield increased under boiling conditions. The initial yields of hexafluoroacetylacetone degradation were 0.29 ± 0.2 and 0.32 ± 0.2 µmol/J at 293 and 343 K, respectively. No accumulation of free HF was observed at low doses. The products of radiolysis are less diverse than those in acetylacetone; this is due to enhancement of the cage effect and to an increase the Onsager radius and the ability of trifluoromethyl groups to dissipate excitation energy.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"17 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Effect of Fast Electrons on Hexafluoroacetylacetone\",\"authors\":\"S. I. Vlasov, E. M. Kholodkova, A. V. Ponomarev\",\"doi\":\"10.1134/s0018143924700371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The radiolysis of liquid and boiling hexafluoroacetylacetone has been studied. The structure of the main radiolysis products indicates the predominance of C–CF<sub>3</sub> and C–F bond cleavages. Ten compounds including monoketones, trifluoroacetic acid, keto alcohols, and tautomeric tetraketones were formed. Carbon monoxide was the main gaseous product, and its yield increased under boiling conditions. The initial yields of hexafluoroacetylacetone degradation were 0.29 ± 0.2 and 0.32 ± 0.2 µmol/J at 293 and 343 K, respectively. No accumulation of free HF was observed at low doses. The products of radiolysis are less diverse than those in acetylacetone; this is due to enhancement of the cage effect and to an increase the Onsager radius and the ability of trifluoromethyl groups to dissipate excitation energy.</p>\",\"PeriodicalId\":12893,\"journal\":{\"name\":\"High Energy Chemistry\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018143924700371\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143924700371","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Direct Effect of Fast Electrons on Hexafluoroacetylacetone
Abstract
The radiolysis of liquid and boiling hexafluoroacetylacetone has been studied. The structure of the main radiolysis products indicates the predominance of C–CF3 and C–F bond cleavages. Ten compounds including monoketones, trifluoroacetic acid, keto alcohols, and tautomeric tetraketones were formed. Carbon monoxide was the main gaseous product, and its yield increased under boiling conditions. The initial yields of hexafluoroacetylacetone degradation were 0.29 ± 0.2 and 0.32 ± 0.2 µmol/J at 293 and 343 K, respectively. No accumulation of free HF was observed at low doses. The products of radiolysis are less diverse than those in acetylacetone; this is due to enhancement of the cage effect and to an increase the Onsager radius and the ability of trifluoromethyl groups to dissipate excitation energy.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.