过去十年杂环 N-芳基化的最新进展

IF 1.7 3区 化学 Q3 CHEMISTRY, ORGANIC Current Organic Chemistry Pub Date : 2024-07-25 DOI:10.2174/0113852728320325240710053300
Xun Yang, Haiyan Li, Quan Jiang, Zhiguo Lei, Yuxuan Xiao, Jialing Liu, Wengui Duan, Lin Yu
{"title":"过去十年杂环 N-芳基化的最新进展","authors":"Xun Yang, Haiyan Li, Quan Jiang, Zhiguo Lei, Yuxuan Xiao, Jialing Liu, Wengui Duan, Lin Yu","doi":"10.2174/0113852728320325240710053300","DOIUrl":null,"url":null,"abstract":"N-arylated heterocycles are a significant class of core scaffolds in medicinal chemistry, materials science, and agrochemistry, highlighting their importance in various fields. The development of innovative methodologies for synthesizing these fundamental structures has been a central focus in organic synthesis. Over the past few decades, numerous approaches have been established to synthesize N-aryl heterocycles efficiently. Among these methods, the direct N-arylation of N-H heterocycles stands out as one of the most straightforward and robust strategies for accessing N-arylated heterocycles. This review provides a comprehensive review of the recent advances in the synthesis of N-arylated heterocycles, encompassing the relevant literature from the past decade. The review summarizes the N-arylation of N-H heterocycles using various catalytic systems, including palladium, nickel, copper, visible light-induced metal-catalyzed, and metal-free catalyzed methodologies. These advances highlighted the continuous evolution and optimization of synthetic strategies to create diverse and complex N-arylated heterocycles, which are pivotal for furthering research and development in multiple scientific domains.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in N-Arylation of Heterocycles in the Past Decade\",\"authors\":\"Xun Yang, Haiyan Li, Quan Jiang, Zhiguo Lei, Yuxuan Xiao, Jialing Liu, Wengui Duan, Lin Yu\",\"doi\":\"10.2174/0113852728320325240710053300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"N-arylated heterocycles are a significant class of core scaffolds in medicinal chemistry, materials science, and agrochemistry, highlighting their importance in various fields. The development of innovative methodologies for synthesizing these fundamental structures has been a central focus in organic synthesis. Over the past few decades, numerous approaches have been established to synthesize N-aryl heterocycles efficiently. Among these methods, the direct N-arylation of N-H heterocycles stands out as one of the most straightforward and robust strategies for accessing N-arylated heterocycles. This review provides a comprehensive review of the recent advances in the synthesis of N-arylated heterocycles, encompassing the relevant literature from the past decade. The review summarizes the N-arylation of N-H heterocycles using various catalytic systems, including palladium, nickel, copper, visible light-induced metal-catalyzed, and metal-free catalyzed methodologies. These advances highlighted the continuous evolution and optimization of synthetic strategies to create diverse and complex N-arylated heterocycles, which are pivotal for furthering research and development in multiple scientific domains.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728320325240710053300\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728320325240710053300","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

在药物化学、材料科学和农业化学领域,N-芳基杂环是一类重要的核心支架,凸显了它们在各个领域的重要性。开发合成这些基本结构的创新方法一直是有机合成的核心重点。在过去的几十年里,人们已经建立了许多方法来高效合成 N-芳基杂环。在这些方法中,N-H 杂环的直接 N-芳基化是获得 N-芳基杂环最直接、最稳健的策略之一。本综述全面回顾了 N-芳基化杂环合成的最新进展,涵盖了过去十年的相关文献。综述总结了使用各种催化体系(包括钯、镍、铜、可见光诱导金属催化和无金属催化方法)对 N-H 杂环进行 N-芳基化的情况。这些进展突显了合成策略的不断演化和优化,从而创造出多样化和复杂的 N-芳基化杂环,这对促进多个科学领域的研究和发展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Advances in N-Arylation of Heterocycles in the Past Decade
N-arylated heterocycles are a significant class of core scaffolds in medicinal chemistry, materials science, and agrochemistry, highlighting their importance in various fields. The development of innovative methodologies for synthesizing these fundamental structures has been a central focus in organic synthesis. Over the past few decades, numerous approaches have been established to synthesize N-aryl heterocycles efficiently. Among these methods, the direct N-arylation of N-H heterocycles stands out as one of the most straightforward and robust strategies for accessing N-arylated heterocycles. This review provides a comprehensive review of the recent advances in the synthesis of N-arylated heterocycles, encompassing the relevant literature from the past decade. The review summarizes the N-arylation of N-H heterocycles using various catalytic systems, including palladium, nickel, copper, visible light-induced metal-catalyzed, and metal-free catalyzed methodologies. These advances highlighted the continuous evolution and optimization of synthetic strategies to create diverse and complex N-arylated heterocycles, which are pivotal for furthering research and development in multiple scientific domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Organic Chemistry
Current Organic Chemistry 化学-有机化学
CiteScore
3.70
自引率
7.70%
发文量
76
审稿时长
1 months
期刊介绍: Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.
期刊最新文献
Di-tert-butyl Peroxide (DTBP)-Promoted Heterocyclic Ring Construction A New Route for the Synthesis of Trichloromethyl-1H-Benzo[d]imidazole and (1,2,3- Triazol)-1H-Benzo[d]imidazole Derivatives via Copper-Catalyzed N-Arylation and Huisgen Reactions Recent Advance in the Reductive Heck Cyclization for the Formation of Five to Nine Member Rings Catalytic Syntheses of Pyrano[3,2-C]Quinolone and -Quinoline Derivatives and their Potential Therapeutic Agents Recent Advances in the Synthesis and Applications of Partially Protected N-Glycosylamines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1