{"title":"开发可生物降解的瓜胶基水凝胶,作为农业应用的高效保湿剂","authors":"Shabnum Saleem, Kashma Sharma, Amit Kumar Sharma, Vishal Sharma, Vaneet Kumar, Vijay Kumar","doi":"10.1007/s10450-024-00519-x","DOIUrl":null,"url":null,"abstract":"<div><p>We prepared guggul gum-based hydrogel (GgG-cl-poly(AA)) through a free radical graft copolymerization mechanism in this work. The preparation was carried out using ammonium persulfate as an initiator, acrylic acid as the monomer, and N, N′-methylenebisacrylamide as the crosslinker. The synthesized hydrogel’s swelling capacity and equilibrium swelling ratio were thoroughly investigated by optimizing various reaction parameters: reaction time, solvent volume, microwave power, crosslinker amount, initiator concentration, and monomer concentration. The swelling results demonstrated that the synthesized hydrogel can attain a maximum percentage swelling of 980% within 3 h in an aqueous solution. The prepared hydrogel sample was characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy, nuclear magnetic resonance, and thermogravimetric analysis. The prepared hydrogel was studied for water retention behavior in the soil, water absorbance in the open air at room temperature, reswelling studies, and resistive swelling studies in various salt solutions at different temperatures and pH values. Notably, the crosslinked hydrogel exhibited a reduced swelling capacity across various salt solutions compared to the aqueous solutions. The biodegradation studies were examined in both soil burial and vermicomposting methods for two months, revealing a maximum biodegradation of 95.65% through the vermicomposting method and 87.7% through the soil burial method. The results indicate that the crosslinked hydrogel based on guggul gum is a potential candidate for various agricultural applications.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 7","pages":"1749 - 1769"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of biodegradable gum guggul-based hydrogel as an efficient moisture-retaining agent for agricultural applications\",\"authors\":\"Shabnum Saleem, Kashma Sharma, Amit Kumar Sharma, Vishal Sharma, Vaneet Kumar, Vijay Kumar\",\"doi\":\"10.1007/s10450-024-00519-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prepared guggul gum-based hydrogel (GgG-cl-poly(AA)) through a free radical graft copolymerization mechanism in this work. The preparation was carried out using ammonium persulfate as an initiator, acrylic acid as the monomer, and N, N′-methylenebisacrylamide as the crosslinker. The synthesized hydrogel’s swelling capacity and equilibrium swelling ratio were thoroughly investigated by optimizing various reaction parameters: reaction time, solvent volume, microwave power, crosslinker amount, initiator concentration, and monomer concentration. The swelling results demonstrated that the synthesized hydrogel can attain a maximum percentage swelling of 980% within 3 h in an aqueous solution. The prepared hydrogel sample was characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy, nuclear magnetic resonance, and thermogravimetric analysis. The prepared hydrogel was studied for water retention behavior in the soil, water absorbance in the open air at room temperature, reswelling studies, and resistive swelling studies in various salt solutions at different temperatures and pH values. Notably, the crosslinked hydrogel exhibited a reduced swelling capacity across various salt solutions compared to the aqueous solutions. The biodegradation studies were examined in both soil burial and vermicomposting methods for two months, revealing a maximum biodegradation of 95.65% through the vermicomposting method and 87.7% through the soil burial method. The results indicate that the crosslinked hydrogel based on guggul gum is a potential candidate for various agricultural applications.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 7\",\"pages\":\"1749 - 1769\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00519-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00519-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Development of biodegradable gum guggul-based hydrogel as an efficient moisture-retaining agent for agricultural applications
We prepared guggul gum-based hydrogel (GgG-cl-poly(AA)) through a free radical graft copolymerization mechanism in this work. The preparation was carried out using ammonium persulfate as an initiator, acrylic acid as the monomer, and N, N′-methylenebisacrylamide as the crosslinker. The synthesized hydrogel’s swelling capacity and equilibrium swelling ratio were thoroughly investigated by optimizing various reaction parameters: reaction time, solvent volume, microwave power, crosslinker amount, initiator concentration, and monomer concentration. The swelling results demonstrated that the synthesized hydrogel can attain a maximum percentage swelling of 980% within 3 h in an aqueous solution. The prepared hydrogel sample was characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy, nuclear magnetic resonance, and thermogravimetric analysis. The prepared hydrogel was studied for water retention behavior in the soil, water absorbance in the open air at room temperature, reswelling studies, and resistive swelling studies in various salt solutions at different temperatures and pH values. Notably, the crosslinked hydrogel exhibited a reduced swelling capacity across various salt solutions compared to the aqueous solutions. The biodegradation studies were examined in both soil burial and vermicomposting methods for two months, revealing a maximum biodegradation of 95.65% through the vermicomposting method and 87.7% through the soil burial method. The results indicate that the crosslinked hydrogel based on guggul gum is a potential candidate for various agricultural applications.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.