Rajeev Kumar, Shivam Singh, Partha Sarkar, Lalit Garia, Varun Kumar Kakar, Abdullah Saad Alsubaie, Amrindra Pal
{"title":"利用双金属结构提高基于方镁石的表面等离子体共振传感器的灵敏度","authors":"Rajeev Kumar, Shivam Singh, Partha Sarkar, Lalit Garia, Varun Kumar Kakar, Abdullah Saad Alsubaie, Amrindra Pal","doi":"10.1007/s11468-024-02432-z","DOIUrl":null,"url":null,"abstract":"<p>This study proposes the franckeite layer onto a bimetallic (Au–Cu) based sensor. The proposed sensors use CaF<sub>2</sub> prism, Au (39 nm), Cu (5 nm), with/without franckeite, and adsorption layer (sensing medium (SM). All the performance analysis is carried out at 633 nm wavelength. At optimized, the bimetallic layer, the remarkable sensitivity, DA, and FoM of 350.76°/RIU, 0.144/°, and 50.50/RIU are achieved, respectively. The proposed sensor’s computed electric field (EF) intensity and penetration depth (PD) are 2.11 × 105 V/m and 204.28 nm at an RI of 1.330 SM. With a quick response indicated by a significant shift in resonance angle, the suggested structure would help detect the RI between 1.33 and 1.335. A detailed comparison with the most recent publications in biomedical applications confirms the outstanding performance of the proposed SPR sensors. This comparison highlights the significant potential of the sensors in biosensing and biomedicine.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Enhancement of Franckeite-Based Surface Plasmon Resonance Sensors Using A Bimetallic Structure\",\"authors\":\"Rajeev Kumar, Shivam Singh, Partha Sarkar, Lalit Garia, Varun Kumar Kakar, Abdullah Saad Alsubaie, Amrindra Pal\",\"doi\":\"10.1007/s11468-024-02432-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes the franckeite layer onto a bimetallic (Au–Cu) based sensor. The proposed sensors use CaF<sub>2</sub> prism, Au (39 nm), Cu (5 nm), with/without franckeite, and adsorption layer (sensing medium (SM). All the performance analysis is carried out at 633 nm wavelength. At optimized, the bimetallic layer, the remarkable sensitivity, DA, and FoM of 350.76°/RIU, 0.144/°, and 50.50/RIU are achieved, respectively. The proposed sensor’s computed electric field (EF) intensity and penetration depth (PD) are 2.11 × 105 V/m and 204.28 nm at an RI of 1.330 SM. With a quick response indicated by a significant shift in resonance angle, the suggested structure would help detect the RI between 1.33 and 1.335. A detailed comparison with the most recent publications in biomedical applications confirms the outstanding performance of the proposed SPR sensors. This comparison highlights the significant potential of the sensors in biosensing and biomedicine.</p>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11468-024-02432-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02432-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Sensitivity Enhancement of Franckeite-Based Surface Plasmon Resonance Sensors Using A Bimetallic Structure
This study proposes the franckeite layer onto a bimetallic (Au–Cu) based sensor. The proposed sensors use CaF2 prism, Au (39 nm), Cu (5 nm), with/without franckeite, and adsorption layer (sensing medium (SM). All the performance analysis is carried out at 633 nm wavelength. At optimized, the bimetallic layer, the remarkable sensitivity, DA, and FoM of 350.76°/RIU, 0.144/°, and 50.50/RIU are achieved, respectively. The proposed sensor’s computed electric field (EF) intensity and penetration depth (PD) are 2.11 × 105 V/m and 204.28 nm at an RI of 1.330 SM. With a quick response indicated by a significant shift in resonance angle, the suggested structure would help detect the RI between 1.33 and 1.335. A detailed comparison with the most recent publications in biomedical applications confirms the outstanding performance of the proposed SPR sensors. This comparison highlights the significant potential of the sensors in biosensing and biomedicine.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.