非平衡最优传输和最大均值差异:相互联系与快速评估

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-24 DOI:10.1007/s10915-024-02586-2
Rajmadan Lakshmanan, Alois Pichler
{"title":"非平衡最优传输和最大均值差异:相互联系与快速评估","authors":"Rajmadan Lakshmanan, Alois Pichler","doi":"10.1007/s10915-024-02586-2","DOIUrl":null,"url":null,"abstract":"<p>This contribution presents substantial computational advancements to compare measures even with varying masses. Specifically, we utilize the nonequispaced fast Fourier transform to accelerate the radial kernel convolution in unbalanced optimal transport approximation, built upon the Sinkhorn algorithm. We also present accelerated schemes for maximum mean discrepancies involving kernels. Our approaches reduce the arithmetic operations needed to compute distances from <span>\\({{\\mathcal {O}}}\\left( n^{2}\\right) \\)</span> to <span>\\({{{\\mathcal {O}}}}\\left( n \\log n \\right) \\)</span>, opening the door to handle large and high-dimensional datasets efficiently. Furthermore, we establish robust connections between transportation problems, encompassing Wasserstein distance and unbalanced optimal transport, and maximum mean discrepancies. This empowers practitioners with compelling rationale to opt for adaptable distances.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbalanced Optimal Transport and Maximum Mean Discrepancies: Interconnections and Rapid Evaluation\",\"authors\":\"Rajmadan Lakshmanan, Alois Pichler\",\"doi\":\"10.1007/s10915-024-02586-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This contribution presents substantial computational advancements to compare measures even with varying masses. Specifically, we utilize the nonequispaced fast Fourier transform to accelerate the radial kernel convolution in unbalanced optimal transport approximation, built upon the Sinkhorn algorithm. We also present accelerated schemes for maximum mean discrepancies involving kernels. Our approaches reduce the arithmetic operations needed to compute distances from <span>\\\\({{\\\\mathcal {O}}}\\\\left( n^{2}\\\\right) \\\\)</span> to <span>\\\\({{{\\\\mathcal {O}}}}\\\\left( n \\\\log n \\\\right) \\\\)</span>, opening the door to handle large and high-dimensional datasets efficiently. Furthermore, we establish robust connections between transportation problems, encompassing Wasserstein distance and unbalanced optimal transport, and maximum mean discrepancies. This empowers practitioners with compelling rationale to opt for adaptable distances.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02586-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02586-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究在计算方面取得了重大进展,即使质量不同,也能比较测量结果。具体来说,我们利用非步进快速傅立叶变换加速了非平衡最优传输近似中的径向核卷积,该算法建立在 Sinkhorn 算法的基础上。我们还提出了涉及核的最大均值差异加速方案。我们的方法将计算距离所需的算术运算从({{\mathcal {O}}}\left( n^{2}\right) \)减少到({{\mathcal {O}}}}\left( n \log n \right) \),为高效处理大型高维数据集打开了大门。此外,我们还在运输问题(包括瓦瑟斯坦距离和不平衡最优运输)与最大均值差异之间建立了稳健的联系。这为从业人员选择自适应距离提供了令人信服的理由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unbalanced Optimal Transport and Maximum Mean Discrepancies: Interconnections and Rapid Evaluation

This contribution presents substantial computational advancements to compare measures even with varying masses. Specifically, we utilize the nonequispaced fast Fourier transform to accelerate the radial kernel convolution in unbalanced optimal transport approximation, built upon the Sinkhorn algorithm. We also present accelerated schemes for maximum mean discrepancies involving kernels. Our approaches reduce the arithmetic operations needed to compute distances from \({{\mathcal {O}}}\left( n^{2}\right) \) to \({{{\mathcal {O}}}}\left( n \log n \right) \), opening the door to handle large and high-dimensional datasets efficiently. Furthermore, we establish robust connections between transportation problems, encompassing Wasserstein distance and unbalanced optimal transport, and maximum mean discrepancies. This empowers practitioners with compelling rationale to opt for adaptable distances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1