{"title":"锡对 HSLA 钢微结构演变的影响","authors":"Zhaoqi Song, Haitao Zhao, Li Yang, Kaixun Wang, Junheng Gao, Honghui Wu, Guilin Wu, Chaolei Zhang, Yuhe Huang, Shuize Wang, Xinping Mao","doi":"10.1007/s11661-024-07528-z","DOIUrl":null,"url":null,"abstract":"<p>The recycling of scrap could cause continuous enrichment of Sn in steels. To reveal the influences of Sn on the mechanical properties and microstructure evolution of high-strength low-alloy (HSLA) steels, HSLA steels with varying Sn contents were designed and a series of continuous cooling tests were conducted. The results show that the effect of Sn on microhardness is mainly affected by the cooling rate. Under cooling rates lower than 10 °C/s, the addition of Sn increases the microhardness due to the solid solution strengthening effect of Sn. The ferrite grain size decreases with the increase of Sn content at a cooling rate of 0.1 °C/s because of the possible solute drag effect of Sn, while no refining effect was found for cooling rates between 0.5 °C/s and 10 °C/s. Under cooling rates higher than 10 °C/s, Sn reduces the ferrite and bainite transformation start temperatures and increases the bainite and martensite phase fractions. The higher hard phase fraction with increasing Sn content results in a significant increase in microhardness, and the contribution of solid solution strengthening plays a supplementary role under this condition. As one of the major residual elements in scrap, the strengthening and hardenability increasing effects of Sn should not be overlooked and may even be properly utilized in alloy design.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Sn on Microstructure Evolution of a HSLA Steel\",\"authors\":\"Zhaoqi Song, Haitao Zhao, Li Yang, Kaixun Wang, Junheng Gao, Honghui Wu, Guilin Wu, Chaolei Zhang, Yuhe Huang, Shuize Wang, Xinping Mao\",\"doi\":\"10.1007/s11661-024-07528-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The recycling of scrap could cause continuous enrichment of Sn in steels. To reveal the influences of Sn on the mechanical properties and microstructure evolution of high-strength low-alloy (HSLA) steels, HSLA steels with varying Sn contents were designed and a series of continuous cooling tests were conducted. The results show that the effect of Sn on microhardness is mainly affected by the cooling rate. Under cooling rates lower than 10 °C/s, the addition of Sn increases the microhardness due to the solid solution strengthening effect of Sn. The ferrite grain size decreases with the increase of Sn content at a cooling rate of 0.1 °C/s because of the possible solute drag effect of Sn, while no refining effect was found for cooling rates between 0.5 °C/s and 10 °C/s. Under cooling rates higher than 10 °C/s, Sn reduces the ferrite and bainite transformation start temperatures and increases the bainite and martensite phase fractions. The higher hard phase fraction with increasing Sn content results in a significant increase in microhardness, and the contribution of solid solution strengthening plays a supplementary role under this condition. As one of the major residual elements in scrap, the strengthening and hardenability increasing effects of Sn should not be overlooked and may even be properly utilized in alloy design.</p>\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07528-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07528-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
废钢的回收利用会导致钢中的锡不断富集。为了揭示 Sn 对高强度低合金钢 (HSLA) 机械性能和微观结构演变的影响,设计了不同 Sn 含量的 HSLA 钢,并进行了一系列连续冷却试验。结果表明,Sn 对显微硬度的影响主要受冷却速率的影响。在冷却速度低于 10 °C/s 的情况下,由于 Sn 的固溶强化效应,Sn 的添加会增加显微硬度。在 0.1 °C/s 的冷却速率下,由于 Sn 可能产生的溶质拖曳效应,铁素体晶粒尺寸随 Sn 含量的增加而减小,而在 0.5 °C/s 至 10 °C/s 的冷却速率下,未发现细化效应。在冷却速度高于 10 °C/s 时,Sn 会降低铁素体和贝氏体的转变起始温度,并增加贝氏体和马氏体的相分数。随着锡含量的增加,硬质相分数增加,导致显微硬度显著提高,固溶强化在此条件下起辅助作用。作为废钢中的主要残余元素之一,锡的强化和淬透性提高作用不容忽视,甚至可以在合金设计中加以适当利用。
Effect of Sn on Microstructure Evolution of a HSLA Steel
The recycling of scrap could cause continuous enrichment of Sn in steels. To reveal the influences of Sn on the mechanical properties and microstructure evolution of high-strength low-alloy (HSLA) steels, HSLA steels with varying Sn contents were designed and a series of continuous cooling tests were conducted. The results show that the effect of Sn on microhardness is mainly affected by the cooling rate. Under cooling rates lower than 10 °C/s, the addition of Sn increases the microhardness due to the solid solution strengthening effect of Sn. The ferrite grain size decreases with the increase of Sn content at a cooling rate of 0.1 °C/s because of the possible solute drag effect of Sn, while no refining effect was found for cooling rates between 0.5 °C/s and 10 °C/s. Under cooling rates higher than 10 °C/s, Sn reduces the ferrite and bainite transformation start temperatures and increases the bainite and martensite phase fractions. The higher hard phase fraction with increasing Sn content results in a significant increase in microhardness, and the contribution of solid solution strengthening plays a supplementary role under this condition. As one of the major residual elements in scrap, the strengthening and hardenability increasing effects of Sn should not be overlooked and may even be properly utilized in alloy design.