Xianfang Song , Yong Zhang , Wanqiu Zhang , Chunlin He , Ying Hu , Jian Wang , Dunwei Gong
{"title":"用于分类中特征选择的进化计算:关于解决方案、应用和挑战的全面调查","authors":"Xianfang Song , Yong Zhang , Wanqiu Zhang , Chunlin He , Ying Hu , Jian Wang , Dunwei Gong","doi":"10.1016/j.swevo.2024.101661","DOIUrl":null,"url":null,"abstract":"<div><p>Feature selection (FS), as one of the most significant preprocessing techniques in the fields of machine learning and pattern recognition, has received great attention. In recent years, evolutionary computation has become a popular technique for handling FS problems due to its superior global search performance. In this paper, a comprehensive review of evolutionary computation research on the FS problems is presented. Firstly, a new taxonomy for the basic components of evolutionary feature selection algorithms (EFSs) is proposed, including encoding strategy, population initialization, population updating, local search, multi-FS hybrid and ensemble. Secondly, we summarize the latest research progress of EFSs on some new and complex scenarios, including large-scale high-dimensional data, multi-objective/metric scenario, multi-label data, distributed storage data, multi-task scenario, multi-modal scenario, interpretable FS and stable FS, etc. Moreover, this survey provides also an in-depth analysis of real-world applications of EFSs, such as hyperspectral band selection, bioinformatics gene selection, text classification and fault detection, etc. Finally, several opportunities for future work are pointed out.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101661"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary computation for feature selection in classification: A comprehensive survey of solutions, applications and challenges\",\"authors\":\"Xianfang Song , Yong Zhang , Wanqiu Zhang , Chunlin He , Ying Hu , Jian Wang , Dunwei Gong\",\"doi\":\"10.1016/j.swevo.2024.101661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Feature selection (FS), as one of the most significant preprocessing techniques in the fields of machine learning and pattern recognition, has received great attention. In recent years, evolutionary computation has become a popular technique for handling FS problems due to its superior global search performance. In this paper, a comprehensive review of evolutionary computation research on the FS problems is presented. Firstly, a new taxonomy for the basic components of evolutionary feature selection algorithms (EFSs) is proposed, including encoding strategy, population initialization, population updating, local search, multi-FS hybrid and ensemble. Secondly, we summarize the latest research progress of EFSs on some new and complex scenarios, including large-scale high-dimensional data, multi-objective/metric scenario, multi-label data, distributed storage data, multi-task scenario, multi-modal scenario, interpretable FS and stable FS, etc. Moreover, this survey provides also an in-depth analysis of real-world applications of EFSs, such as hyperspectral band selection, bioinformatics gene selection, text classification and fault detection, etc. Finally, several opportunities for future work are pointed out.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"90 \",\"pages\":\"Article 101661\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224001998\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224001998","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Evolutionary computation for feature selection in classification: A comprehensive survey of solutions, applications and challenges
Feature selection (FS), as one of the most significant preprocessing techniques in the fields of machine learning and pattern recognition, has received great attention. In recent years, evolutionary computation has become a popular technique for handling FS problems due to its superior global search performance. In this paper, a comprehensive review of evolutionary computation research on the FS problems is presented. Firstly, a new taxonomy for the basic components of evolutionary feature selection algorithms (EFSs) is proposed, including encoding strategy, population initialization, population updating, local search, multi-FS hybrid and ensemble. Secondly, we summarize the latest research progress of EFSs on some new and complex scenarios, including large-scale high-dimensional data, multi-objective/metric scenario, multi-label data, distributed storage data, multi-task scenario, multi-modal scenario, interpretable FS and stable FS, etc. Moreover, this survey provides also an in-depth analysis of real-world applications of EFSs, such as hyperspectral band selection, bioinformatics gene selection, text classification and fault detection, etc. Finally, several opportunities for future work are pointed out.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.