{"title":"优化 5G 网络中的资源分配:采用混合 NOMA 的网络切片方法,增强 uRLLC 和 eMBB 的共存性","authors":"Rebba Chandra Sekhar, Poonam Singh","doi":"10.1002/dac.5928","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Traditional Orthogonal Multiple Access (OMA) and spectrum sharing methods struggle to provide the diverse quality of service (QoS) demands for enhanced mobile broadband (eMBB), ultra-reliable low latency communications (uRLLC), and massive machine type communications (mMTC) leading to suboptimal performance and service quality degradation. Single-carrier-non-orthogonal multiple access (SC-NOMA) appears to be a more optimized solution. It can serve multiple users simultaneously on the same time-frequency resources. This approach offers both enhanced spectrum efficiency and meets the QoS requirements for the coexistence of eMBB, uRLLC, and mMTC. However, SC-NOMA has some drawbacks. Decoding a user's signal involves a complex successive interference cancellation (SIC) process that gets harder with more users causing delays and errors. Additionally, strong user signals can interfere with weaker ones, limiting the number of users per channel. In order to overcome the drawbacks associated with OMA and SC-NOMA, this paper introduces a new method called user-paired NOMA (hybrid NOMA). Hybrid NOMA adopts a strategic approach, employing two user pairing techniques: near-far/far-near (NF-FN) and near-near/far-far (NN-FF). NF-FN pairing prioritizes users with similar signal strengths but different distances from the base station. This minimizes interference for the weaker user during SIC. NN-FF pairing, on the other hand, groups users with similar signal strengths and proximity. This approach further simplifies SIC and minimizes potential interference altogether. The simulation results demonstrate trade-offs between eMBB and uRLLC performance. OMA suffers with dedicated resource allocation, while SC-NOMA balances performance but experiences interference. NN-FF prioritizes eMBB and offers best latency, while NF-FN prioritizes uRLLC with high spectral efficiency but suffers from higher latency. Finally, by providing a thorough grasp of how hybrid NOMA resource allocation works to improve the performance of various use cases, this research makes a significant contribution to the field of 5G spectrum optimization.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 17","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of resource allocation in 5G networks: A network slicing approach with hybrid NOMA for enhanced uRLLC and eMBB coexistence\",\"authors\":\"Rebba Chandra Sekhar, Poonam Singh\",\"doi\":\"10.1002/dac.5928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Traditional Orthogonal Multiple Access (OMA) and spectrum sharing methods struggle to provide the diverse quality of service (QoS) demands for enhanced mobile broadband (eMBB), ultra-reliable low latency communications (uRLLC), and massive machine type communications (mMTC) leading to suboptimal performance and service quality degradation. Single-carrier-non-orthogonal multiple access (SC-NOMA) appears to be a more optimized solution. It can serve multiple users simultaneously on the same time-frequency resources. This approach offers both enhanced spectrum efficiency and meets the QoS requirements for the coexistence of eMBB, uRLLC, and mMTC. However, SC-NOMA has some drawbacks. Decoding a user's signal involves a complex successive interference cancellation (SIC) process that gets harder with more users causing delays and errors. Additionally, strong user signals can interfere with weaker ones, limiting the number of users per channel. In order to overcome the drawbacks associated with OMA and SC-NOMA, this paper introduces a new method called user-paired NOMA (hybrid NOMA). Hybrid NOMA adopts a strategic approach, employing two user pairing techniques: near-far/far-near (NF-FN) and near-near/far-far (NN-FF). NF-FN pairing prioritizes users with similar signal strengths but different distances from the base station. This minimizes interference for the weaker user during SIC. NN-FF pairing, on the other hand, groups users with similar signal strengths and proximity. This approach further simplifies SIC and minimizes potential interference altogether. The simulation results demonstrate trade-offs between eMBB and uRLLC performance. OMA suffers with dedicated resource allocation, while SC-NOMA balances performance but experiences interference. NN-FF prioritizes eMBB and offers best latency, while NF-FN prioritizes uRLLC with high spectral efficiency but suffers from higher latency. Finally, by providing a thorough grasp of how hybrid NOMA resource allocation works to improve the performance of various use cases, this research makes a significant contribution to the field of 5G spectrum optimization.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"37 17\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.5928\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5928","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimization of resource allocation in 5G networks: A network slicing approach with hybrid NOMA for enhanced uRLLC and eMBB coexistence
Traditional Orthogonal Multiple Access (OMA) and spectrum sharing methods struggle to provide the diverse quality of service (QoS) demands for enhanced mobile broadband (eMBB), ultra-reliable low latency communications (uRLLC), and massive machine type communications (mMTC) leading to suboptimal performance and service quality degradation. Single-carrier-non-orthogonal multiple access (SC-NOMA) appears to be a more optimized solution. It can serve multiple users simultaneously on the same time-frequency resources. This approach offers both enhanced spectrum efficiency and meets the QoS requirements for the coexistence of eMBB, uRLLC, and mMTC. However, SC-NOMA has some drawbacks. Decoding a user's signal involves a complex successive interference cancellation (SIC) process that gets harder with more users causing delays and errors. Additionally, strong user signals can interfere with weaker ones, limiting the number of users per channel. In order to overcome the drawbacks associated with OMA and SC-NOMA, this paper introduces a new method called user-paired NOMA (hybrid NOMA). Hybrid NOMA adopts a strategic approach, employing two user pairing techniques: near-far/far-near (NF-FN) and near-near/far-far (NN-FF). NF-FN pairing prioritizes users with similar signal strengths but different distances from the base station. This minimizes interference for the weaker user during SIC. NN-FF pairing, on the other hand, groups users with similar signal strengths and proximity. This approach further simplifies SIC and minimizes potential interference altogether. The simulation results demonstrate trade-offs between eMBB and uRLLC performance. OMA suffers with dedicated resource allocation, while SC-NOMA balances performance but experiences interference. NN-FF prioritizes eMBB and offers best latency, while NF-FN prioritizes uRLLC with high spectral efficiency but suffers from higher latency. Finally, by providing a thorough grasp of how hybrid NOMA resource allocation works to improve the performance of various use cases, this research makes a significant contribution to the field of 5G spectrum optimization.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.