{"title":"关于 UWSN 中节点定位技术的调查:潜在解决方案、最新进展和未来方向","authors":"Mamta Nain, Nitin Goyal, Sanjay Kumar Dhurandher, Mayank Dave, Anil Kumar Verma, Amita Malik","doi":"10.1002/dac.5915","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Location-based underwater communication applications such as strategic surveillance, disaster prevention, marine research, and mine detection have given the field of underwater wireless sensor networks (UWSN) a head start. Node localization is a prerequisite for accurate data collection, target monitoring, and network management in UWSNs. However, the unique characteristics of the underwater environment, such as signal attenuation, multipath propagation, and variable acoustic properties, pose a major challenge to effective node localization. Accurate sensor node location data is essential for successful underwater data collection, but difficult to achieve as the GPS system cannot be used in an underwater environment. In this paper, existing node localization techniques such as ALS, SLUM, MASL, SLMP, UDB, USP, etc., and recent advances such as the fusion of range-based and range-free techniques, the fusion of RSSI and AoA to improve localization accuracy by using directional information in addition to signal strength, and the use of optimization techniques such as PSO, COA, and WOA algorithms to improve the accuracy of the applied node localization algorithm, e.g., TP-TSFLA, and challenges related to UWSN are discussed. Also, different localization algorithms that affect the accuracy of UWSN localization techniques have been evaluated and compared with NS2 in terms of localization error, localization coverage, energy consumption, and average communication cost metrics. In addition, this paper also provides an up-to-date investigation of localization techniques. Finally, the tools available for simulation are presented, followed by open research questions that need to be addressed in the localization of nodes.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 16","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey on node localization technologies in UWSNs: Potential solutions, recent advancements, and future directions\",\"authors\":\"Mamta Nain, Nitin Goyal, Sanjay Kumar Dhurandher, Mayank Dave, Anil Kumar Verma, Amita Malik\",\"doi\":\"10.1002/dac.5915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Location-based underwater communication applications such as strategic surveillance, disaster prevention, marine research, and mine detection have given the field of underwater wireless sensor networks (UWSN) a head start. Node localization is a prerequisite for accurate data collection, target monitoring, and network management in UWSNs. However, the unique characteristics of the underwater environment, such as signal attenuation, multipath propagation, and variable acoustic properties, pose a major challenge to effective node localization. Accurate sensor node location data is essential for successful underwater data collection, but difficult to achieve as the GPS system cannot be used in an underwater environment. In this paper, existing node localization techniques such as ALS, SLUM, MASL, SLMP, UDB, USP, etc., and recent advances such as the fusion of range-based and range-free techniques, the fusion of RSSI and AoA to improve localization accuracy by using directional information in addition to signal strength, and the use of optimization techniques such as PSO, COA, and WOA algorithms to improve the accuracy of the applied node localization algorithm, e.g., TP-TSFLA, and challenges related to UWSN are discussed. Also, different localization algorithms that affect the accuracy of UWSN localization techniques have been evaluated and compared with NS2 in terms of localization error, localization coverage, energy consumption, and average communication cost metrics. In addition, this paper also provides an up-to-date investigation of localization techniques. Finally, the tools available for simulation are presented, followed by open research questions that need to be addressed in the localization of nodes.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"37 16\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.5915\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5915","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A survey on node localization technologies in UWSNs: Potential solutions, recent advancements, and future directions
Location-based underwater communication applications such as strategic surveillance, disaster prevention, marine research, and mine detection have given the field of underwater wireless sensor networks (UWSN) a head start. Node localization is a prerequisite for accurate data collection, target monitoring, and network management in UWSNs. However, the unique characteristics of the underwater environment, such as signal attenuation, multipath propagation, and variable acoustic properties, pose a major challenge to effective node localization. Accurate sensor node location data is essential for successful underwater data collection, but difficult to achieve as the GPS system cannot be used in an underwater environment. In this paper, existing node localization techniques such as ALS, SLUM, MASL, SLMP, UDB, USP, etc., and recent advances such as the fusion of range-based and range-free techniques, the fusion of RSSI and AoA to improve localization accuracy by using directional information in addition to signal strength, and the use of optimization techniques such as PSO, COA, and WOA algorithms to improve the accuracy of the applied node localization algorithm, e.g., TP-TSFLA, and challenges related to UWSN are discussed. Also, different localization algorithms that affect the accuracy of UWSN localization techniques have been evaluated and compared with NS2 in terms of localization error, localization coverage, energy consumption, and average communication cost metrics. In addition, this paper also provides an up-to-date investigation of localization techniques. Finally, the tools available for simulation are presented, followed by open research questions that need to be addressed in the localization of nodes.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.