惯性参数识别中可观测性的几何特征

Patrick M. Wensing, Günter Niemeyer, Jean-Jacques E. Slotine
{"title":"惯性参数识别中可观测性的几何特征","authors":"Patrick M. Wensing, Günter Niemeyer, Jean-Jacques E. Slotine","doi":"10.1177/02783649241258215","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm to geometrically characterize inertial parameter identifiability for an articulated robot. The geometric approach tests identifiability across the infinite space of configurations using only a finite set of conditions and without approximation. It can be applied to general open-chain kinematic trees ranging from industrial manipulators to legged robots, and it is the first solution for this broad set of systems that is provably correct. The high-level operation of the algorithm is based on a key observation: Undetectable changes in inertial parameters can be represented as sequences of inertial transfers across the joints. Drawing on the exponential parameterization of rigid-body kinematics, undetectable inertial transfers are analyzed in terms of observability from linear systems theory. This analysis can be applied recursively, and lends an overall complexity of O( N) to characterize parameter identifiability for a system of N bodies. Matlab source code for the new algorithm is provided.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometric characterization of observability in inertial parameter identification\",\"authors\":\"Patrick M. Wensing, Günter Niemeyer, Jean-Jacques E. Slotine\",\"doi\":\"10.1177/02783649241258215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm to geometrically characterize inertial parameter identifiability for an articulated robot. The geometric approach tests identifiability across the infinite space of configurations using only a finite set of conditions and without approximation. It can be applied to general open-chain kinematic trees ranging from industrial manipulators to legged robots, and it is the first solution for this broad set of systems that is provably correct. The high-level operation of the algorithm is based on a key observation: Undetectable changes in inertial parameters can be represented as sequences of inertial transfers across the joints. Drawing on the exponential parameterization of rigid-body kinematics, undetectable inertial transfers are analyzed in terms of observability from linear systems theory. This analysis can be applied recursively, and lends an overall complexity of O( N) to characterize parameter identifiability for a system of N bodies. Matlab source code for the new algorithm is provided.\",\"PeriodicalId\":501362,\"journal\":{\"name\":\"The International Journal of Robotics Research\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649241258215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649241258215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种从几何角度描述铰接式机器人惯性参数可识别性的算法。几何方法仅使用一组有限条件,无需近似,即可测试无限配置空间中的可识别性。该方法可应用于从工业机械手到腿部机器人的一般开链运动学树,并且是首个可证明正确性的广泛系统解决方案。该算法的高级运行基于一个关键观察结果:无法察觉的惯性参数变化可以表示为跨关节的惯性转移序列。利用刚体运动学的指数参数化,从线性系统理论的可观测性角度对不可检测的惯性转移进行了分析。这种分析可以递归应用,并以 O( N) 的总体复杂度来描述由 N 个体组成的系统的参数可识别性。本文提供了新算法的 Matlab 源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A geometric characterization of observability in inertial parameter identification
This paper presents an algorithm to geometrically characterize inertial parameter identifiability for an articulated robot. The geometric approach tests identifiability across the infinite space of configurations using only a finite set of conditions and without approximation. It can be applied to general open-chain kinematic trees ranging from industrial manipulators to legged robots, and it is the first solution for this broad set of systems that is provably correct. The high-level operation of the algorithm is based on a key observation: Undetectable changes in inertial parameters can be represented as sequences of inertial transfers across the joints. Drawing on the exponential parameterization of rigid-body kinematics, undetectable inertial transfers are analyzed in terms of observability from linear systems theory. This analysis can be applied recursively, and lends an overall complexity of O( N) to characterize parameter identifiability for a system of N bodies. Matlab source code for the new algorithm is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer learning in robotics: An upcoming breakthrough? A review of promises and challenges Selected papers from WAFR 2022 Continuum concentric push–pull robots: A Cosserat rod model Sim-to-real transfer of adaptive control parameters for AUV stabilisation under current disturbance No compromise in solution quality: Speeding up belief-dependent continuous partially observable Markov decision processes via adaptive multilevel simplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1