一个时空离散扩散性群内捕食模型中的非线性动力学和模式形成

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED Physica D: Nonlinear Phenomena Pub Date : 2024-07-19 DOI:10.1016/j.physd.2024.134295
{"title":"一个时空离散扩散性群内捕食模型中的非线性动力学和模式形成","authors":"","doi":"10.1016/j.physd.2024.134295","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the spatiotemporal dynamics and pattern formation of a space–time discrete intraguild predation model with self-diffusion are investigated. The model is obtained by applying a coupled map lattice (CML) method. First, using linear stability analysis, the existence and stability conditions for fixed points are determined. Second, using the center manifold theorem and the bifurcation theory, the occurrence of flip, Neimark-Sacker, and Turing bifurcations are discussed. It is shown that the patterns obtained are results of Turing, flip, and Neimark-Sacker instabilities. Numerical simulations are performed to verify the theoretical analysis and to reveal complex and rich dynamics of the model, such as times series, maximal Lyapunov exponent, bifurcation diagrams, and phase portraits. Interesting patterns like spiral pattern, polygonal pattern, and the combinations of patterns of spiral waves and stripes are formed. The CML model’s results help to understand how a spatially extended, discrete intraguild predation model forms complex patterns. Notably, the continuous reaction–diffusion counterpart of the model under study is incapable of experiencing Turing instability.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamics and pattern formation in a space–time discrete diffusive intraguild predation model\",\"authors\":\"\",\"doi\":\"10.1016/j.physd.2024.134295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the spatiotemporal dynamics and pattern formation of a space–time discrete intraguild predation model with self-diffusion are investigated. The model is obtained by applying a coupled map lattice (CML) method. First, using linear stability analysis, the existence and stability conditions for fixed points are determined. Second, using the center manifold theorem and the bifurcation theory, the occurrence of flip, Neimark-Sacker, and Turing bifurcations are discussed. It is shown that the patterns obtained are results of Turing, flip, and Neimark-Sacker instabilities. Numerical simulations are performed to verify the theoretical analysis and to reveal complex and rich dynamics of the model, such as times series, maximal Lyapunov exponent, bifurcation diagrams, and phase portraits. Interesting patterns like spiral pattern, polygonal pattern, and the combinations of patterns of spiral waves and stripes are formed. The CML model’s results help to understand how a spatially extended, discrete intraguild predation model forms complex patterns. Notably, the continuous reaction–diffusion counterpart of the model under study is incapable of experiencing Turing instability.</p></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892400246X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400246X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个具有自扩散的时空离散群内捕食模型的时空动力学和模式形成。该模型是通过耦合图格(CML)方法得到的。首先,通过线性稳定性分析,确定了固定点的存在和稳定性条件。其次,利用中心流形定理和分岔理论,讨论了翻转、Neimark-Sacker 和图灵分岔的发生。结果表明,所获得的模式是图灵、翻转和奈马克-萨克不稳定性的结果。通过数值模拟验证了理论分析,并揭示了模型复杂而丰富的动态,如时间序列、最大 Lyapunov 指数、分岔图和相位肖像。形成了有趣的模式,如螺旋模式、多边形模式以及螺旋波和条纹模式的组合。CML 模型的结果有助于理解空间扩展的离散群内捕食模型是如何形成复杂模式的。值得注意的是,所研究模型的连续反应-扩散对应模型不可能出现图灵不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear dynamics and pattern formation in a space–time discrete diffusive intraguild predation model

In this paper, the spatiotemporal dynamics and pattern formation of a space–time discrete intraguild predation model with self-diffusion are investigated. The model is obtained by applying a coupled map lattice (CML) method. First, using linear stability analysis, the existence and stability conditions for fixed points are determined. Second, using the center manifold theorem and the bifurcation theory, the occurrence of flip, Neimark-Sacker, and Turing bifurcations are discussed. It is shown that the patterns obtained are results of Turing, flip, and Neimark-Sacker instabilities. Numerical simulations are performed to verify the theoretical analysis and to reveal complex and rich dynamics of the model, such as times series, maximal Lyapunov exponent, bifurcation diagrams, and phase portraits. Interesting patterns like spiral pattern, polygonal pattern, and the combinations of patterns of spiral waves and stripes are formed. The CML model’s results help to understand how a spatially extended, discrete intraguild predation model forms complex patterns. Notably, the continuous reaction–diffusion counterpart of the model under study is incapable of experiencing Turing instability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
期刊最新文献
Effects of asymmetric rates and impulse interference in Rock-Paper-Scissors games Mathematical modeling of emission and control of carbon dioxide from infrastructure expansion activities Whitham modulation theory and Riemann problem for the Kundu–Eckhaus equation Sundman theorem revisited Fluid flow between two parallel active plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1