{"title":"淀粉磷酸化--大海捞针","authors":"Julia Compart, Ardha Apriyanto, Joerg Fettke","doi":"10.1186/s13007-024-01237-9","DOIUrl":null,"url":null,"abstract":"Phosphoesterification is the only naturally occurring covalent starch modification identified to date, and it has a major impact on overall starch metabolism. The incorporation of phosphate groups mediated by dikinases [α-glucan, water dikinase (GWD), EC 2.7.9.4; phosphoglucan, water dikinase (PWD), EC 2.7.9.5] massively alters the starch granule properties; however, previous studies did not determine whether the starch-related dikinases bind the phosphate to the glucosyl units within the amylopectin molecules in a specific pattern or randomly. In order to answer this challenging question, a number of approaches were initially pursued until a protocol could be established that enabled a massive step forward in the in vitro analysis of phosphorylated glucan chains obtained from starch. For this purpose, phosphorylation by GWD was investigated, including the final state of phosphorylation i.e., the state of substrate saturation when GWD lacks further free hydroxyl groups at OH-C6 for the catalysis of monophosphate esters. Since the separated phosphorylated glucan chains were required for the analysis, isoamylase digestion was performed to cleave the α-1,6-glycosidic bonds and to allow for the removal of the huge number of existing neutral chains by means of anion exchange chromatography. Via Matrix-Assisted Laser Desorption/Ionization–Time of Flight (MALDI-TOF) MS and MALDI-MS/MS, the phosphorylated α-glucan chains were analysed, and the position of the phosphate group within the chain in relation to the reducing end was determined. Here, we demonstrate a protocol that enables the analysis of phosphorylated oligosaccharides, even in small quantities.","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"62 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Starch phosphorylation—A needle in a haystack\",\"authors\":\"Julia Compart, Ardha Apriyanto, Joerg Fettke\",\"doi\":\"10.1186/s13007-024-01237-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphoesterification is the only naturally occurring covalent starch modification identified to date, and it has a major impact on overall starch metabolism. The incorporation of phosphate groups mediated by dikinases [α-glucan, water dikinase (GWD), EC 2.7.9.4; phosphoglucan, water dikinase (PWD), EC 2.7.9.5] massively alters the starch granule properties; however, previous studies did not determine whether the starch-related dikinases bind the phosphate to the glucosyl units within the amylopectin molecules in a specific pattern or randomly. In order to answer this challenging question, a number of approaches were initially pursued until a protocol could be established that enabled a massive step forward in the in vitro analysis of phosphorylated glucan chains obtained from starch. For this purpose, phosphorylation by GWD was investigated, including the final state of phosphorylation i.e., the state of substrate saturation when GWD lacks further free hydroxyl groups at OH-C6 for the catalysis of monophosphate esters. Since the separated phosphorylated glucan chains were required for the analysis, isoamylase digestion was performed to cleave the α-1,6-glycosidic bonds and to allow for the removal of the huge number of existing neutral chains by means of anion exchange chromatography. Via Matrix-Assisted Laser Desorption/Ionization–Time of Flight (MALDI-TOF) MS and MALDI-MS/MS, the phosphorylated α-glucan chains were analysed, and the position of the phosphate group within the chain in relation to the reducing end was determined. Here, we demonstrate a protocol that enables the analysis of phosphorylated oligosaccharides, even in small quantities.\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01237-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01237-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Phosphoesterification is the only naturally occurring covalent starch modification identified to date, and it has a major impact on overall starch metabolism. The incorporation of phosphate groups mediated by dikinases [α-glucan, water dikinase (GWD), EC 2.7.9.4; phosphoglucan, water dikinase (PWD), EC 2.7.9.5] massively alters the starch granule properties; however, previous studies did not determine whether the starch-related dikinases bind the phosphate to the glucosyl units within the amylopectin molecules in a specific pattern or randomly. In order to answer this challenging question, a number of approaches were initially pursued until a protocol could be established that enabled a massive step forward in the in vitro analysis of phosphorylated glucan chains obtained from starch. For this purpose, phosphorylation by GWD was investigated, including the final state of phosphorylation i.e., the state of substrate saturation when GWD lacks further free hydroxyl groups at OH-C6 for the catalysis of monophosphate esters. Since the separated phosphorylated glucan chains were required for the analysis, isoamylase digestion was performed to cleave the α-1,6-glycosidic bonds and to allow for the removal of the huge number of existing neutral chains by means of anion exchange chromatography. Via Matrix-Assisted Laser Desorption/Ionization–Time of Flight (MALDI-TOF) MS and MALDI-MS/MS, the phosphorylated α-glucan chains were analysed, and the position of the phosphate group within the chain in relation to the reducing end was determined. Here, we demonstrate a protocol that enables the analysis of phosphorylated oligosaccharides, even in small quantities.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.