粉煤灰对高含水率硫铝酸钙水泥基材料性能和水化的影响

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Reviews on Advanced Materials Science Pub Date : 2024-07-24 DOI:10.1515/rams-2024-0046
Meng Gao, Mengying Li, Jiahao Wang, Pengfei Yang, Mengge Xu
{"title":"粉煤灰对高含水率硫铝酸钙水泥基材料性能和水化的影响","authors":"Meng Gao, Mengying Li, Jiahao Wang, Pengfei Yang, Mengge Xu","doi":"10.1515/rams-2024-0046","DOIUrl":null,"url":null,"abstract":"In this study, the effects of fly ash (FA) on the setting time, compressive strength, and hydration evolution of calcium sulphoaluminate (CSA) cement-based materials with high water content were investigated, targeting the design of a modified high-water material to delay excessively rapid setting time and enhance later-age strength. This was investigated using a combination of X-ray diffraction (XRD), Fourier transform infrared resonance (FTIR) spectroscopy, and Thermogravimetric Analysis (TGA). The results showed that the setting time of the high-water materials was delayed by increasing the FA content, with 15% being the optimal dosage for the setting time. A 5–10% content of FA is conducive to the development of later-age compressive strength and has a slight adverse effect on the early-age compressive strength of high-water materials. The microscopic test results show that FA mainly acts as a microaggregate in the early-age hydration process, whereas in the later-age hydration process, it promotes gypsum consumption and C<jats:sub>2</jats:sub>S hydration to form ettringite. The incorporation of FA effectively promotes ettringite formation in CSA cement-based materials with high water content. Therefore, the addition of FA can enhance the overall performance of high-water materials to a certain extent, and the long-term strength development of the material can satisfy engineering requirements.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"62 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of fly ash on properties and hydration of calcium sulphoaluminate cement-based materials with high water content\",\"authors\":\"Meng Gao, Mengying Li, Jiahao Wang, Pengfei Yang, Mengge Xu\",\"doi\":\"10.1515/rams-2024-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effects of fly ash (FA) on the setting time, compressive strength, and hydration evolution of calcium sulphoaluminate (CSA) cement-based materials with high water content were investigated, targeting the design of a modified high-water material to delay excessively rapid setting time and enhance later-age strength. This was investigated using a combination of X-ray diffraction (XRD), Fourier transform infrared resonance (FTIR) spectroscopy, and Thermogravimetric Analysis (TGA). The results showed that the setting time of the high-water materials was delayed by increasing the FA content, with 15% being the optimal dosage for the setting time. A 5–10% content of FA is conducive to the development of later-age compressive strength and has a slight adverse effect on the early-age compressive strength of high-water materials. The microscopic test results show that FA mainly acts as a microaggregate in the early-age hydration process, whereas in the later-age hydration process, it promotes gypsum consumption and C<jats:sub>2</jats:sub>S hydration to form ettringite. The incorporation of FA effectively promotes ettringite formation in CSA cement-based materials with high water content. Therefore, the addition of FA can enhance the overall performance of high-water materials to a certain extent, and the long-term strength development of the material can satisfy engineering requirements.\",\"PeriodicalId\":54484,\"journal\":{\"name\":\"Reviews on Advanced Materials Science\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on Advanced Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/rams-2024-0046\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2024-0046","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了粉煤灰(FA)对高含水量硫铝酸钙(CSA)水泥基材料的凝结时间、抗压强度和水化演化的影响,旨在设计一种改良的高含水量材料,以延缓过快的凝结时间并提高后期强度。研究结合使用了 X 射线衍射 (XRD)、傅立叶变换红外共振 (FTIR) 光谱和热重分析 (TGA)。结果表明,随着 FA 含量的增加,高水材料的凝固时间被延缓,15% 是凝固时间的最佳用量。5-10% 的 FA 含量有利于后期抗压强度的发展,对高水材料的早期抗压强度略有不利影响。显微试验结果表明,FA 在早期水化过程中主要起微集料作用,而在后期水化过程中则促进石膏消耗和 C2S 水化形成乙长石。在含水率较高的 CSA 水泥基材料中掺入 FA 能有效促进乙长石的形成。因此,掺加 FA 能在一定程度上提高高水材料的综合性能,材料的长期强度发展也能满足工程要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of fly ash on properties and hydration of calcium sulphoaluminate cement-based materials with high water content
In this study, the effects of fly ash (FA) on the setting time, compressive strength, and hydration evolution of calcium sulphoaluminate (CSA) cement-based materials with high water content were investigated, targeting the design of a modified high-water material to delay excessively rapid setting time and enhance later-age strength. This was investigated using a combination of X-ray diffraction (XRD), Fourier transform infrared resonance (FTIR) spectroscopy, and Thermogravimetric Analysis (TGA). The results showed that the setting time of the high-water materials was delayed by increasing the FA content, with 15% being the optimal dosage for the setting time. A 5–10% content of FA is conducive to the development of later-age compressive strength and has a slight adverse effect on the early-age compressive strength of high-water materials. The microscopic test results show that FA mainly acts as a microaggregate in the early-age hydration process, whereas in the later-age hydration process, it promotes gypsum consumption and C2S hydration to form ettringite. The incorporation of FA effectively promotes ettringite formation in CSA cement-based materials with high water content. Therefore, the addition of FA can enhance the overall performance of high-water materials to a certain extent, and the long-term strength development of the material can satisfy engineering requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews on Advanced Materials Science
Reviews on Advanced Materials Science 工程技术-材料科学:综合
CiteScore
5.10
自引率
11.10%
发文量
43
审稿时长
3.5 months
期刊介绍: Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
期刊最新文献
Toward sustainability: Integrating experimental study and data-driven modeling for eco-friendly paver blocks containing plastic waste A sawtooth constitutive model describing strain hardening and multiple cracking of ECC under uniaxial tension Predicting mechanical properties of sustainable green concrete using novel machine learning: Stacking and gene expression programming Producing sustainable binding materials using marble waste blended with fly ash and rice husk ash for building materials Parameter optimization for ultrasonic-assisted grinding of γ-TiAl intermetallics: A gray relational analysis approach with surface integrity evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1