针对双燃料燃烧概念的发动机排出碳氢化合物标示和 DOC 反应建模

IF 2.2 4区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Engine Research Pub Date : 2024-07-25 DOI:10.1177/14680874241262048
Antonio García, José V Pastor, Javier Monsalve-Serrano, Álvaro Fogué-Robles
{"title":"针对双燃料燃烧概念的发动机排出碳氢化合物标示和 DOC 反应建模","authors":"Antonio García, José V Pastor, Javier Monsalve-Serrano, Álvaro Fogué-Robles","doi":"10.1177/14680874241262048","DOIUrl":null,"url":null,"abstract":"The concerns for global warming have pushed very harsh regulations on conventional propulsion systems based on the use of fossil fuels. New technologies are being promoted, but their current technological status needs further research and development to become a competitive substitute for the ever-present internal combustion engine. Transition technologies like hybrid-electric platforms are the preferred solution, but their dependence on the internal combustion engine demands continued developing and improving this technology. Advanced combustion modes like dual-mode dual-fuel combustion are attractive solutions with room for improvement. This work evaluates the specifics of the hydrocarbon composition emitted during the operation of a medium-duty dual-mode dual-fuel engine, analyzing the specific requirements of a diesel oxidation catalyst for this application. Also, the modeling approach of this after-treatment component is revised for this type of application, proposing a new approach and evaluating numerically the performance of a conventional diesel oxidation catalyst. The results show that the new modeling approach brings better accuracy when modeling the transient operation of the engine.","PeriodicalId":14034,"journal":{"name":"International Journal of Engine Research","volume":"7 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engine-out hydrocarbon speciation and DOC reaction modeling for dual-fuel combustion concept\",\"authors\":\"Antonio García, José V Pastor, Javier Monsalve-Serrano, Álvaro Fogué-Robles\",\"doi\":\"10.1177/14680874241262048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concerns for global warming have pushed very harsh regulations on conventional propulsion systems based on the use of fossil fuels. New technologies are being promoted, but their current technological status needs further research and development to become a competitive substitute for the ever-present internal combustion engine. Transition technologies like hybrid-electric platforms are the preferred solution, but their dependence on the internal combustion engine demands continued developing and improving this technology. Advanced combustion modes like dual-mode dual-fuel combustion are attractive solutions with room for improvement. This work evaluates the specifics of the hydrocarbon composition emitted during the operation of a medium-duty dual-mode dual-fuel engine, analyzing the specific requirements of a diesel oxidation catalyst for this application. Also, the modeling approach of this after-treatment component is revised for this type of application, proposing a new approach and evaluating numerically the performance of a conventional diesel oxidation catalyst. The results show that the new modeling approach brings better accuracy when modeling the transient operation of the engine.\",\"PeriodicalId\":14034,\"journal\":{\"name\":\"International Journal of Engine Research\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engine Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14680874241262048\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engine Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14680874241262048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

对全球变暖的担忧促使人们对以使用化石燃料为基础的传统推进系统做出了非常严格的规定。新技术正在得到推广,但其目前的技术状况还需要进一步的研究和开发,才能成为有竞争力的替代品,取代一直存在的内燃机。混合动力电动平台等过渡技术是首选的解决方案,但它们对内燃机的依赖要求继续开发和改进这一技术。双模式双燃料燃烧等先进燃烧模式是有吸引力的解决方案,但仍有改进空间。这项工作评估了中型双模式双燃料发动机运行期间排放的碳氢化合物成分的具体情况,分析了这一应用对柴油氧化催化剂的具体要求。同时,针对此类应用对后处理组件的建模方法进行了修订,提出了一种新方法,并对传统柴油氧化催化剂的性能进行了数值评估。结果表明,在对发动机的瞬态运行进行建模时,新的建模方法具有更好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engine-out hydrocarbon speciation and DOC reaction modeling for dual-fuel combustion concept
The concerns for global warming have pushed very harsh regulations on conventional propulsion systems based on the use of fossil fuels. New technologies are being promoted, but their current technological status needs further research and development to become a competitive substitute for the ever-present internal combustion engine. Transition technologies like hybrid-electric platforms are the preferred solution, but their dependence on the internal combustion engine demands continued developing and improving this technology. Advanced combustion modes like dual-mode dual-fuel combustion are attractive solutions with room for improvement. This work evaluates the specifics of the hydrocarbon composition emitted during the operation of a medium-duty dual-mode dual-fuel engine, analyzing the specific requirements of a diesel oxidation catalyst for this application. Also, the modeling approach of this after-treatment component is revised for this type of application, proposing a new approach and evaluating numerically the performance of a conventional diesel oxidation catalyst. The results show that the new modeling approach brings better accuracy when modeling the transient operation of the engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Engine Research
International Journal of Engine Research 工程技术-工程:机械
CiteScore
6.50
自引率
16.00%
发文量
130
审稿时长
>12 weeks
期刊介绍: The International Journal of Engine Research publishes high quality papers on experimental and analytical studies of engine technology.
期刊最新文献
Development of a semi-empirical physical model for transient NOx emissions prediction from a high-speed diesel engine. Transient NOx emission modeling of a hydrogen-diesel engine using hybrid machine learning methods An efficient product design tool for aftertreatment system Computational investigation of a methanol compression ignition engine assisted by a glow plug A consistent model of the initiation, early expansion, and possible extinction of a spark-ignited flame kernel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1