Irene MGM Hemel, Carlijn Steen, Simon LIJ Denil, Gokhan Ertaylan, Martina Kutmon, Michiel Adriaens, Mike Gerards
{"title":"线粒体动力学的守护者:中间丝蛋白的新作用","authors":"Irene MGM Hemel, Carlijn Steen, Simon LIJ Denil, Gokhan Ertaylan, Martina Kutmon, Michiel Adriaens, Mike Gerards","doi":"10.1101/2024.07.19.604282","DOIUrl":null,"url":null,"abstract":"Mitochondria are dynamic organelles and the main source of cellular energy. Their dynamic nature is crucial to meet cellular requirements. However, the processes and proteins involved in mitochondrial dynamics are not fully understood. Using a computational protein-protein interaction approach, we identified ITPRIPL2, which caused mitochondrial elongation upon knockdown. ITPRIPL2 co-localizes with the intermediate filament protein vimentin and interacts with vimentin according to protein simulations. ITPRIPL2 knockdown alters vimentin processing, disrupts intermediate filaments and transcriptomics analysis revealed changes in vimentin-related pathways. Our data illustrates that ITPRIPL2 is essential for vimentin related intermediate filament structure. Interestingly, like ITPRIPL2 knockdown, vimentin knockdown results in mitochondrial elongation. Our data highlights ITPRIPL2 as a vimentin-associated protein and reveals a role for intermediate filaments in mitochondrial dynamics, improving our understanding of mitochondrial dynamics regulators. Moreover, our study demonstrates that protein-protein interaction analysis is a powerful approach for identifying novel mitochondrial dynamics proteins.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The guardians of mitochondrial dynamics: a novel role for intermediate filament proteins\",\"authors\":\"Irene MGM Hemel, Carlijn Steen, Simon LIJ Denil, Gokhan Ertaylan, Martina Kutmon, Michiel Adriaens, Mike Gerards\",\"doi\":\"10.1101/2024.07.19.604282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitochondria are dynamic organelles and the main source of cellular energy. Their dynamic nature is crucial to meet cellular requirements. However, the processes and proteins involved in mitochondrial dynamics are not fully understood. Using a computational protein-protein interaction approach, we identified ITPRIPL2, which caused mitochondrial elongation upon knockdown. ITPRIPL2 co-localizes with the intermediate filament protein vimentin and interacts with vimentin according to protein simulations. ITPRIPL2 knockdown alters vimentin processing, disrupts intermediate filaments and transcriptomics analysis revealed changes in vimentin-related pathways. Our data illustrates that ITPRIPL2 is essential for vimentin related intermediate filament structure. Interestingly, like ITPRIPL2 knockdown, vimentin knockdown results in mitochondrial elongation. Our data highlights ITPRIPL2 as a vimentin-associated protein and reveals a role for intermediate filaments in mitochondrial dynamics, improving our understanding of mitochondrial dynamics regulators. Moreover, our study demonstrates that protein-protein interaction analysis is a powerful approach for identifying novel mitochondrial dynamics proteins.\",\"PeriodicalId\":501213,\"journal\":{\"name\":\"bioRxiv - Systems Biology\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.19.604282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.19.604282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The guardians of mitochondrial dynamics: a novel role for intermediate filament proteins
Mitochondria are dynamic organelles and the main source of cellular energy. Their dynamic nature is crucial to meet cellular requirements. However, the processes and proteins involved in mitochondrial dynamics are not fully understood. Using a computational protein-protein interaction approach, we identified ITPRIPL2, which caused mitochondrial elongation upon knockdown. ITPRIPL2 co-localizes with the intermediate filament protein vimentin and interacts with vimentin according to protein simulations. ITPRIPL2 knockdown alters vimentin processing, disrupts intermediate filaments and transcriptomics analysis revealed changes in vimentin-related pathways. Our data illustrates that ITPRIPL2 is essential for vimentin related intermediate filament structure. Interestingly, like ITPRIPL2 knockdown, vimentin knockdown results in mitochondrial elongation. Our data highlights ITPRIPL2 as a vimentin-associated protein and reveals a role for intermediate filaments in mitochondrial dynamics, improving our understanding of mitochondrial dynamics regulators. Moreover, our study demonstrates that protein-protein interaction analysis is a powerful approach for identifying novel mitochondrial dynamics proteins.