Deniro Felipe Gonçalves Costa, Ana Fonseca, Johan de Grave, Tiago Novo
{"title":"将差异地壳结构与被动边缘演化联系起来:利用磷灰石裂变轨道热年代学对科拉蒂纳断裂带(巴西东南部)进行案例研究","authors":"Deniro Felipe Gonçalves Costa, Ana Fonseca, Johan de Grave, Tiago Novo","doi":"10.1002/gj.5027","DOIUrl":null,"url":null,"abstract":"<p>The Colatina Fracture Zone (CFZ) defines a distinct NNW–SSE-oriented linear zone of fractures and brittle faults that represents an inherited weak zone in the current crustal structure of the (Pre)Cambrian Araçuaí Orogen. In the Early Cretaceous, the CFZ was reactivated during rifting of West Gondwana and subsequent opening of the South Atlantic Ocean, as evidenced by the emplacement of dykes along its structural network and the development of major depocentres of the Campos Basin in the offshore segments of the CFZ. Previous thermochronological studies have demonstrated that the CFZ was also rejuvenated during the drift phase of the South Atlantic. However, a number of questions regarding differential surface uplift and basement exhumation between the CFZ and its surrounding areas, such as the Doce River Valley (DRV), are still unresolved. In this study, we aim to investigate the CFZ as a distinctive structure in the tectonic rejuvenation of the passive margin of south-east Brazil. Samples from the CFZ and the DRV were collected for apatite fission-track (AFT) analyses. In the DRV, samples yield AFT central ages from 87 to 97 Ma with mean track lengths (MTL) from 12.6 to 13.3 μm. In contrast, in the CFZ, AFT central ages from 70 to 83 Ma with MTL values from 13.2 and 13.4 μm are obtained. The correlation between AFT age and elevation suggests that the tectonic development of these regions was markedly different and uncoupled. The thermal history models from the AFT data further constrain this differential evolution. On the one hand, thermal history modelling for the DRV indicates a slower and protracted cooling since the incipient Atlantic rifting in the Early Cretaceous. On the other hand, the models for CFZ reveal a rapid cooling phase between the Late Cretaceous to the Palaeocene. In the DRV, the observed basement cooling was most probably triggered by erosion of the uplifted rift shoulder generated by Gondwana break-up. The more recent, Late Cretaceous–Palaeocene rock cooling, localized in the CFZ, was synchronous with a major phase of the Andean orogeny. This suggests that reactivations and erosional exhumation of the CFZ basement could be a consequence of far-field propagation of intraplate compressional stress. The higher susceptibility of the CFZ to reactivating over its surroundings shows that structural inheritance is a key factor in the differential tectonic evolution of passive margins. Further research on the Late Cretaceous–Palaeocene reactivation in the CFZ's offshore extension may be crucial for the exploitation of hydrocarbons in the Campos and Espírito Santos basins.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 10","pages":"2789-2802"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relating differential crustal architecture to passive margin evolution: A case study from the Colatina Fracture Zone (SE Brazil) using apatite fission-track thermochronology\",\"authors\":\"Deniro Felipe Gonçalves Costa, Ana Fonseca, Johan de Grave, Tiago Novo\",\"doi\":\"10.1002/gj.5027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Colatina Fracture Zone (CFZ) defines a distinct NNW–SSE-oriented linear zone of fractures and brittle faults that represents an inherited weak zone in the current crustal structure of the (Pre)Cambrian Araçuaí Orogen. In the Early Cretaceous, the CFZ was reactivated during rifting of West Gondwana and subsequent opening of the South Atlantic Ocean, as evidenced by the emplacement of dykes along its structural network and the development of major depocentres of the Campos Basin in the offshore segments of the CFZ. Previous thermochronological studies have demonstrated that the CFZ was also rejuvenated during the drift phase of the South Atlantic. However, a number of questions regarding differential surface uplift and basement exhumation between the CFZ and its surrounding areas, such as the Doce River Valley (DRV), are still unresolved. In this study, we aim to investigate the CFZ as a distinctive structure in the tectonic rejuvenation of the passive margin of south-east Brazil. Samples from the CFZ and the DRV were collected for apatite fission-track (AFT) analyses. In the DRV, samples yield AFT central ages from 87 to 97 Ma with mean track lengths (MTL) from 12.6 to 13.3 μm. In contrast, in the CFZ, AFT central ages from 70 to 83 Ma with MTL values from 13.2 and 13.4 μm are obtained. The correlation between AFT age and elevation suggests that the tectonic development of these regions was markedly different and uncoupled. The thermal history models from the AFT data further constrain this differential evolution. On the one hand, thermal history modelling for the DRV indicates a slower and protracted cooling since the incipient Atlantic rifting in the Early Cretaceous. On the other hand, the models for CFZ reveal a rapid cooling phase between the Late Cretaceous to the Palaeocene. In the DRV, the observed basement cooling was most probably triggered by erosion of the uplifted rift shoulder generated by Gondwana break-up. The more recent, Late Cretaceous–Palaeocene rock cooling, localized in the CFZ, was synchronous with a major phase of the Andean orogeny. This suggests that reactivations and erosional exhumation of the CFZ basement could be a consequence of far-field propagation of intraplate compressional stress. The higher susceptibility of the CFZ to reactivating over its surroundings shows that structural inheritance is a key factor in the differential tectonic evolution of passive margins. Further research on the Late Cretaceous–Palaeocene reactivation in the CFZ's offshore extension may be crucial for the exploitation of hydrocarbons in the Campos and Espírito Santos basins.</p>\",\"PeriodicalId\":12784,\"journal\":{\"name\":\"Geological Journal\",\"volume\":\"59 10\",\"pages\":\"2789-2802\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gj.5027\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5027","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Relating differential crustal architecture to passive margin evolution: A case study from the Colatina Fracture Zone (SE Brazil) using apatite fission-track thermochronology
The Colatina Fracture Zone (CFZ) defines a distinct NNW–SSE-oriented linear zone of fractures and brittle faults that represents an inherited weak zone in the current crustal structure of the (Pre)Cambrian Araçuaí Orogen. In the Early Cretaceous, the CFZ was reactivated during rifting of West Gondwana and subsequent opening of the South Atlantic Ocean, as evidenced by the emplacement of dykes along its structural network and the development of major depocentres of the Campos Basin in the offshore segments of the CFZ. Previous thermochronological studies have demonstrated that the CFZ was also rejuvenated during the drift phase of the South Atlantic. However, a number of questions regarding differential surface uplift and basement exhumation between the CFZ and its surrounding areas, such as the Doce River Valley (DRV), are still unresolved. In this study, we aim to investigate the CFZ as a distinctive structure in the tectonic rejuvenation of the passive margin of south-east Brazil. Samples from the CFZ and the DRV were collected for apatite fission-track (AFT) analyses. In the DRV, samples yield AFT central ages from 87 to 97 Ma with mean track lengths (MTL) from 12.6 to 13.3 μm. In contrast, in the CFZ, AFT central ages from 70 to 83 Ma with MTL values from 13.2 and 13.4 μm are obtained. The correlation between AFT age and elevation suggests that the tectonic development of these regions was markedly different and uncoupled. The thermal history models from the AFT data further constrain this differential evolution. On the one hand, thermal history modelling for the DRV indicates a slower and protracted cooling since the incipient Atlantic rifting in the Early Cretaceous. On the other hand, the models for CFZ reveal a rapid cooling phase between the Late Cretaceous to the Palaeocene. In the DRV, the observed basement cooling was most probably triggered by erosion of the uplifted rift shoulder generated by Gondwana break-up. The more recent, Late Cretaceous–Palaeocene rock cooling, localized in the CFZ, was synchronous with a major phase of the Andean orogeny. This suggests that reactivations and erosional exhumation of the CFZ basement could be a consequence of far-field propagation of intraplate compressional stress. The higher susceptibility of the CFZ to reactivating over its surroundings shows that structural inheritance is a key factor in the differential tectonic evolution of passive margins. Further research on the Late Cretaceous–Palaeocene reactivation in the CFZ's offshore extension may be crucial for the exploitation of hydrocarbons in the Campos and Espírito Santos basins.
期刊介绍:
In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited.
The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.