Stéphane Vannitsem, Carlos A. Pires, David Docquier
{"title":"因果关系和香农熵预算:对降阶大气模型的分析","authors":"Stéphane Vannitsem, Carlos A. Pires, David Docquier","doi":"10.1002/qj.4805","DOIUrl":null,"url":null,"abstract":"The information entropy budget and the rate of information transfer between variables is studied in the context of a nonlinear reduced‐order atmospheric model. The key ingredients of the dynamics are present in this model; namely, the baroclinic instability, the instability related to the presence of an orography, the dissipation related to the surface friction, and the large‐scale meridional imbalance of energy. For the parameters chosen, the solutions of this system display a chaotic dynamics reminiscent of the large‐scale atmospheric dynamics in the extratropics. The detailed information entropy budget analysis of this system reveals that the linear rotation terms play a minor role in the generation of uncertainties compared with the orography and the surface friction. Additionally, the dominant contribution comes from the nonlinear advection terms, and their decomposition in synergetic (covariability) and single (impact of each single variable on the target one) components reveals that for some variables the covariability dominates the information transfer. The estimation of the rate of information transfer based on time series is also discussed, and an extension of the Liang's approach to nonlinear observables is proposed.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal dependencies and Shannon entropy budget: Analysis of a reduced‐order atmospheric model\",\"authors\":\"Stéphane Vannitsem, Carlos A. Pires, David Docquier\",\"doi\":\"10.1002/qj.4805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information entropy budget and the rate of information transfer between variables is studied in the context of a nonlinear reduced‐order atmospheric model. The key ingredients of the dynamics are present in this model; namely, the baroclinic instability, the instability related to the presence of an orography, the dissipation related to the surface friction, and the large‐scale meridional imbalance of energy. For the parameters chosen, the solutions of this system display a chaotic dynamics reminiscent of the large‐scale atmospheric dynamics in the extratropics. The detailed information entropy budget analysis of this system reveals that the linear rotation terms play a minor role in the generation of uncertainties compared with the orography and the surface friction. Additionally, the dominant contribution comes from the nonlinear advection terms, and their decomposition in synergetic (covariability) and single (impact of each single variable on the target one) components reveals that for some variables the covariability dominates the information transfer. The estimation of the rate of information transfer based on time series is also discussed, and an extension of the Liang's approach to nonlinear observables is proposed.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4805\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4805","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Causal dependencies and Shannon entropy budget: Analysis of a reduced‐order atmospheric model
The information entropy budget and the rate of information transfer between variables is studied in the context of a nonlinear reduced‐order atmospheric model. The key ingredients of the dynamics are present in this model; namely, the baroclinic instability, the instability related to the presence of an orography, the dissipation related to the surface friction, and the large‐scale meridional imbalance of energy. For the parameters chosen, the solutions of this system display a chaotic dynamics reminiscent of the large‐scale atmospheric dynamics in the extratropics. The detailed information entropy budget analysis of this system reveals that the linear rotation terms play a minor role in the generation of uncertainties compared with the orography and the surface friction. Additionally, the dominant contribution comes from the nonlinear advection terms, and their decomposition in synergetic (covariability) and single (impact of each single variable on the target one) components reveals that for some variables the covariability dominates the information transfer. The estimation of the rate of information transfer based on time series is also discussed, and an extension of the Liang's approach to nonlinear observables is proposed.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.