Ran Chen , Amber Srivastava , Mingzhou Yin , Roy S. Smith
{"title":"利用双输入输出参数化对稳定模型进行闭环识别","authors":"Ran Chen , Amber Srivastava , Mingzhou Yin , Roy S. Smith","doi":"10.1016/j.ejcon.2024.101089","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a dual input–output parameterization (dual IOP) for the identification of linear time-invariant systems from closed-loop data. It draws inspiration from the recent input–output parameterization developed to synthesize a stabilizing controller. The controller is parameterized in terms of closed-loop transfer functions, from the external disturbances to the input and output of the system, constrained to lie in a given subspace. Analogously, the dual IOP method parameterizes the unknown plant with analogous closed-loop transfer functions, also referred to as dual parameters. In this case, these closed-loop transfer functions are constrained to lie in an affine subspace guaranteeing that the identified plant is <em>stabilized</em> by the known controller. Compared with existing closed-loop identification techniques guaranteeing closed-loop stability, such as the dual Youla parameterization, the dual IOP requires neither a doubly-coprime factorization of the controller nor a nominal plant that is stabilized by the controller. The dual IOP does not depend on the order and the state-space realization of the controller either, as in the dual system-level parameterization. Simulation shows that the dual IOP outperforms the existing benchmark methods.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101089"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-loop identification of stabilized models using dual input–output parameterization\",\"authors\":\"Ran Chen , Amber Srivastava , Mingzhou Yin , Roy S. Smith\",\"doi\":\"10.1016/j.ejcon.2024.101089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a dual input–output parameterization (dual IOP) for the identification of linear time-invariant systems from closed-loop data. It draws inspiration from the recent input–output parameterization developed to synthesize a stabilizing controller. The controller is parameterized in terms of closed-loop transfer functions, from the external disturbances to the input and output of the system, constrained to lie in a given subspace. Analogously, the dual IOP method parameterizes the unknown plant with analogous closed-loop transfer functions, also referred to as dual parameters. In this case, these closed-loop transfer functions are constrained to lie in an affine subspace guaranteeing that the identified plant is <em>stabilized</em> by the known controller. Compared with existing closed-loop identification techniques guaranteeing closed-loop stability, such as the dual Youla parameterization, the dual IOP requires neither a doubly-coprime factorization of the controller nor a nominal plant that is stabilized by the controller. The dual IOP does not depend on the order and the state-space realization of the controller either, as in the dual system-level parameterization. Simulation shows that the dual IOP outperforms the existing benchmark methods.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101089\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001493\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001493","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Closed-loop identification of stabilized models using dual input–output parameterization
This paper introduces a dual input–output parameterization (dual IOP) for the identification of linear time-invariant systems from closed-loop data. It draws inspiration from the recent input–output parameterization developed to synthesize a stabilizing controller. The controller is parameterized in terms of closed-loop transfer functions, from the external disturbances to the input and output of the system, constrained to lie in a given subspace. Analogously, the dual IOP method parameterizes the unknown plant with analogous closed-loop transfer functions, also referred to as dual parameters. In this case, these closed-loop transfer functions are constrained to lie in an affine subspace guaranteeing that the identified plant is stabilized by the known controller. Compared with existing closed-loop identification techniques guaranteeing closed-loop stability, such as the dual Youla parameterization, the dual IOP requires neither a doubly-coprime factorization of the controller nor a nominal plant that is stabilized by the controller. The dual IOP does not depend on the order and the state-space realization of the controller either, as in the dual system-level parameterization. Simulation shows that the dual IOP outperforms the existing benchmark methods.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.