脉冲星定时阵列需要分层模型

Rutger van Haasteren
{"title":"脉冲星定时阵列需要分层模型","authors":"Rutger van Haasteren","doi":"10.3847/1538-4365/ad530f","DOIUrl":null,"url":null,"abstract":"Pulsar timing array (PTA) projects have found evidence of a stochastic background of gravitational waves (GWB) using data from an ensemble of pulsars. In the literature, minimal assumptions are made about the signal and noise processes that affect data from these pulsars, such as pulsar spin noise. These assumptions are encoded as uninformative priors in Bayesian searches, though frequentist approaches make similar assumptions. Uninformative priors are not suitable for (noise) properties of pulsars in an ensemble, and they bias estimates of model parameters such as gravitational-wave signal parameters. Both frequentist and Bayesian searches are affected. In this article, more appropriate priors are proposed in the language of hierarchical Bayesian modeling, where the properties of the ensemble of pulsars are jointly described with the properties of the individual components of the ensemble. Results by PTA projects should be reevaluated using hierarchical models.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulsar Timing Arrays Require Hierarchical Models\",\"authors\":\"Rutger van Haasteren\",\"doi\":\"10.3847/1538-4365/ad530f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulsar timing array (PTA) projects have found evidence of a stochastic background of gravitational waves (GWB) using data from an ensemble of pulsars. In the literature, minimal assumptions are made about the signal and noise processes that affect data from these pulsars, such as pulsar spin noise. These assumptions are encoded as uninformative priors in Bayesian searches, though frequentist approaches make similar assumptions. Uninformative priors are not suitable for (noise) properties of pulsars in an ensemble, and they bias estimates of model parameters such as gravitational-wave signal parameters. Both frequentist and Bayesian searches are affected. In this article, more appropriate priors are proposed in the language of hierarchical Bayesian modeling, where the properties of the ensemble of pulsars are jointly described with the properties of the individual components of the ensemble. Results by PTA projects should be reevaluated using hierarchical models.\",\"PeriodicalId\":22368,\"journal\":{\"name\":\"The Astrophysical Journal Supplement Series\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad530f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad530f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脉冲星定时阵列(PTA)项目利用脉冲星集合的数据发现了引力波(GWB)随机背景的证据。在文献中,对影响这些脉冲星数据的信号和噪声过程(如脉冲星自旋噪声)做了最低限度的假设。这些假设在贝叶斯搜索中被编码为无信息先验,尽管频数法也有类似的假设。非信息先验并不适合脉冲星集合的(噪声)特性,而且它们会对引力波信号参数等模型参数的估计产生偏差。频繁搜索和贝叶斯搜索都会受到影响。本文用分层贝叶斯建模的语言提出了更合适的先验值,在这种建模中,脉冲星集合的特性是与集合中各个组成部分的特性共同描述的。PTA项目的结果应使用分层模型进行重新评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulsar Timing Arrays Require Hierarchical Models
Pulsar timing array (PTA) projects have found evidence of a stochastic background of gravitational waves (GWB) using data from an ensemble of pulsars. In the literature, minimal assumptions are made about the signal and noise processes that affect data from these pulsars, such as pulsar spin noise. These assumptions are encoded as uninformative priors in Bayesian searches, though frequentist approaches make similar assumptions. Uninformative priors are not suitable for (noise) properties of pulsars in an ensemble, and they bias estimates of model parameters such as gravitational-wave signal parameters. Both frequentist and Bayesian searches are affected. In this article, more appropriate priors are proposed in the language of hierarchical Bayesian modeling, where the properties of the ensemble of pulsars are jointly described with the properties of the individual components of the ensemble. Results by PTA projects should be reevaluated using hierarchical models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework Optical Variability of Gaia CRF3 Sources with Robust Statistics and the 5000 Most Variable Quasars Metrics of Astrometric Variability in the International Celestial Reference Frame. I. Statistical Analysis and Selection of the Most Variable Sources Forecast of Foreground Cleaning Strategies for AliCPT-1 Catalog of Proper Orbits for 1.25 Million Main-belt Asteroids and Discovery of 136 New Collisional Families
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1