{"title":"基于铁电 GaN HEMT 的生物传感器的性能鉴定","authors":"Nawal Topno, V. Hemaja, D.K.Panda, Dinesh Kumar Dash, Raghunandan Swain, Sandipan Mallik, Jitendra Kumar Dash","doi":"10.1007/s00542-024-05727-7","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript detection of biomolecules has been performed using both the dielectric modulation method as well as gate work function engineering technique for the proposed device ferroelectric GaN HEMT-based biosensor. Many previous literature reports have focused on the underlap technique in most of the biosensor devices but for the first time since we have implemented this innovative concept which has never been implemented before for ferroelectric GaN HEMT biosensor devices. This work has been carried out using Silvaco Atlas TCAD software. From the results it noticed that in comparison to devices without the introduction of biomolecules and with immobilization of biomolecules there is an increase in current value three times, also a positive shift in threshold voltage, and higher sensitivity value as it depends upon factors such as drain current and threshold voltage, etc., and also a reduction in leakage current. The high-concentration 2-DEG results in higher sensitivity to the surface state and gate voltage, and the merits of the device, such as high-voltage and high-frequency. Therefore we conclude that a significant increase in electrostatic properties has been noticed for the case of triple materials gate-based devices with the increase in biomolecule concentration for both side cavity devices.. Therefore it can be concluded that there is increase in performance for DC and Analog performance.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance characterization of Ferroelectric GaN HEMT based biosensor\",\"authors\":\"Nawal Topno, V. Hemaja, D.K.Panda, Dinesh Kumar Dash, Raghunandan Swain, Sandipan Mallik, Jitendra Kumar Dash\",\"doi\":\"10.1007/s00542-024-05727-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this manuscript detection of biomolecules has been performed using both the dielectric modulation method as well as gate work function engineering technique for the proposed device ferroelectric GaN HEMT-based biosensor. Many previous literature reports have focused on the underlap technique in most of the biosensor devices but for the first time since we have implemented this innovative concept which has never been implemented before for ferroelectric GaN HEMT biosensor devices. This work has been carried out using Silvaco Atlas TCAD software. From the results it noticed that in comparison to devices without the introduction of biomolecules and with immobilization of biomolecules there is an increase in current value three times, also a positive shift in threshold voltage, and higher sensitivity value as it depends upon factors such as drain current and threshold voltage, etc., and also a reduction in leakage current. The high-concentration 2-DEG results in higher sensitivity to the surface state and gate voltage, and the merits of the device, such as high-voltage and high-frequency. Therefore we conclude that a significant increase in electrostatic properties has been noticed for the case of triple materials gate-based devices with the increase in biomolecule concentration for both side cavity devices.. Therefore it can be concluded that there is increase in performance for DC and Analog performance.</p>\",\"PeriodicalId\":18544,\"journal\":{\"name\":\"Microsystem Technologies\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystem Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00542-024-05727-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05727-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本手稿中,我们使用介电调制方法和栅极功函数工程技术对基于铁电 GaN HEMT 的生物传感器进行了生物分子检测。以前的许多文献报告都把重点放在大多数生物传感器件的欠隙技术上,但我们首次在铁电 GaN HEMT 生物传感器件上采用了这一创新概念,而这在以前是从未有过的。这项工作是使用 Silvaco Atlas TCAD 软件完成的。研究结果表明,与未引入生物分子的器件和固定生物分子的器件相比,电流值增加了三倍,阈值电压也发生了正移,灵敏度值提高了,因为灵敏度取决于漏极电流和阈值电压等因素,同时漏电流也降低了。高浓度 2-DEG 导致对表面状态和栅极电压以及器件的优点(如高压和高频)具有更高的灵敏度。因此,我们得出结论:在基于三重材料栅极的器件中,随着生物分子浓度的增加,两侧空腔器件的静电特性显著增加。因此可以得出结论,直流和模拟性能都有所提高。
Performance characterization of Ferroelectric GaN HEMT based biosensor
In this manuscript detection of biomolecules has been performed using both the dielectric modulation method as well as gate work function engineering technique for the proposed device ferroelectric GaN HEMT-based biosensor. Many previous literature reports have focused on the underlap technique in most of the biosensor devices but for the first time since we have implemented this innovative concept which has never been implemented before for ferroelectric GaN HEMT biosensor devices. This work has been carried out using Silvaco Atlas TCAD software. From the results it noticed that in comparison to devices without the introduction of biomolecules and with immobilization of biomolecules there is an increase in current value three times, also a positive shift in threshold voltage, and higher sensitivity value as it depends upon factors such as drain current and threshold voltage, etc., and also a reduction in leakage current. The high-concentration 2-DEG results in higher sensitivity to the surface state and gate voltage, and the merits of the device, such as high-voltage and high-frequency. Therefore we conclude that a significant increase in electrostatic properties has been noticed for the case of triple materials gate-based devices with the increase in biomolecule concentration for both side cavity devices.. Therefore it can be concluded that there is increase in performance for DC and Analog performance.