模拟电致伸缩特性中聚合物的临界频率

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE Macromolecular Theory and Simulations Pub Date : 2024-07-24 DOI:10.1002/mats.202400045
Yulong Wang, Tong Liu, Meng Wang, Lili Li, Junguo Gao, Ning Guo, Defeng Zang, Ji Liu
{"title":"模拟电致伸缩特性中聚合物的临界频率","authors":"Yulong Wang, Tong Liu, Meng Wang, Lili Li, Junguo Gao, Ning Guo, Defeng Zang, Ji Liu","doi":"10.1002/mats.202400045","DOIUrl":null,"url":null,"abstract":"The critical frequency and the relaxation time are analyzed through deformation and displacement during electrostriction which is induced by the electrical field at different frequencies. First, when the frequency is 50 Hz and the field strength is 2.5 kV mm<jats:sup>−1</jats:sup>, the electrostrictive displacement of polyethylene is 6.72 × 10<jats:sup>−4</jats:sup> mm. After the data fitting, it is found that the displacement increases linearly with the square of field strength and that the proportional coefficient of 50 Hz is 1.08 × 10<jats:sup>−4</jats:sup>. Second, due to the influence of relaxation polarization and power loss, with the increase of frequency, the displacement and the proportional coefficient first increases then decreases, and when the frequency is 10 kHz, the displacement of 2.20 × 10<jats:sup>−6</jats:sup> mm and the proportional coefficient of 3.51 × 10<jats:sup>−7</jats:sup> have minimum values, which are 99.67% and 99.68% lower than that of 50 Hz, respectively. There is the critical frequency. Finally, based on the characteristic of anomalous dispersion, the relaxation time of polyethylene is 9.19 × 10<jats:sup>−6</jats:sup>s, which is in the time range of thermionic relaxation polarization and consistent with the actual situation. This analysis confirms the quantitative relationship between electrostrictive characteristics, field strength, and polarization. In addition, the relationship between frequency and strain is discussed, and the critical frequency in polymer and the relaxation time are confirmed.","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"18 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation on Critical Frequency of Polymer in Electrostrictive Properties\",\"authors\":\"Yulong Wang, Tong Liu, Meng Wang, Lili Li, Junguo Gao, Ning Guo, Defeng Zang, Ji Liu\",\"doi\":\"10.1002/mats.202400045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The critical frequency and the relaxation time are analyzed through deformation and displacement during electrostriction which is induced by the electrical field at different frequencies. First, when the frequency is 50 Hz and the field strength is 2.5 kV mm<jats:sup>−1</jats:sup>, the electrostrictive displacement of polyethylene is 6.72 × 10<jats:sup>−4</jats:sup> mm. After the data fitting, it is found that the displacement increases linearly with the square of field strength and that the proportional coefficient of 50 Hz is 1.08 × 10<jats:sup>−4</jats:sup>. Second, due to the influence of relaxation polarization and power loss, with the increase of frequency, the displacement and the proportional coefficient first increases then decreases, and when the frequency is 10 kHz, the displacement of 2.20 × 10<jats:sup>−6</jats:sup> mm and the proportional coefficient of 3.51 × 10<jats:sup>−7</jats:sup> have minimum values, which are 99.67% and 99.68% lower than that of 50 Hz, respectively. There is the critical frequency. Finally, based on the characteristic of anomalous dispersion, the relaxation time of polyethylene is 9.19 × 10<jats:sup>−6</jats:sup>s, which is in the time range of thermionic relaxation polarization and consistent with the actual situation. This analysis confirms the quantitative relationship between electrostrictive characteristics, field strength, and polarization. In addition, the relationship between frequency and strain is discussed, and the critical frequency in polymer and the relaxation time are confirmed.\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mats.202400045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mats.202400045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过电场在不同频率下引起的电致伸缩过程中的变形和位移,分析了临界频率和弛豫时间。首先,当频率为 50 Hz,电场强度为 2.5 kV mm-1 时,聚乙烯的电致伸缩位移为 6.72 × 10-4 mm。数据拟合后发现,位移与场强的平方成线性增长,50 Hz 时的比例系数为 1.08 × 10-4。其次,由于弛豫极化和功率损耗的影响,随着频率的增加,位移和比例系数先增大后减小,当频率为 10 kHz 时,位移为 2.20 × 10-6 mm,比例系数为 3.51 × 10-7 ,均为最小值,分别比 50 Hz 低 99.67% 和 99.68%。这就是临界频率。最后,根据反常色散的特征,聚乙烯的弛豫时间为 9.19 × 10-6s,处于热离子弛豫极化的时间范围内,与实际情况相符。这一分析证实了电致伸缩特性、场强和极化之间的定量关系。此外,还讨论了频率与应变之间的关系,并确认了聚合物中的临界频率和弛豫时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation on Critical Frequency of Polymer in Electrostrictive Properties
The critical frequency and the relaxation time are analyzed through deformation and displacement during electrostriction which is induced by the electrical field at different frequencies. First, when the frequency is 50 Hz and the field strength is 2.5 kV mm−1, the electrostrictive displacement of polyethylene is 6.72 × 10−4 mm. After the data fitting, it is found that the displacement increases linearly with the square of field strength and that the proportional coefficient of 50 Hz is 1.08 × 10−4. Second, due to the influence of relaxation polarization and power loss, with the increase of frequency, the displacement and the proportional coefficient first increases then decreases, and when the frequency is 10 kHz, the displacement of 2.20 × 10−6 mm and the proportional coefficient of 3.51 × 10−7 have minimum values, which are 99.67% and 99.68% lower than that of 50 Hz, respectively. There is the critical frequency. Finally, based on the characteristic of anomalous dispersion, the relaxation time of polyethylene is 9.19 × 10−6s, which is in the time range of thermionic relaxation polarization and consistent with the actual situation. This analysis confirms the quantitative relationship between electrostrictive characteristics, field strength, and polarization. In addition, the relationship between frequency and strain is discussed, and the critical frequency in polymer and the relaxation time are confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
期刊最新文献
Masthead: Macromol. Theory Simul. 6/2024 The Logistic Function in Glass Transition Models of Amorphous Polymers: A Theoretical Framework for Isobaric Cooling Processes The Logistic Function in Glass Transition Models of Amorphous Polymers: A Theoretical Framework for Isobaric Cooling Processes Masthead: Macromol. Theory Simul. 5/2024 Investigating the Effect of Rheological Parameter Ratios on the Mixing Properties of TPU Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1