Kyung‐yeul Kim, Young‐bo Yang, Mi‐ra Kim, Jihie Kim, Ji Su Park
{"title":"基于深度学习的 WZT 图画图像早期抑郁预测","authors":"Kyung‐yeul Kim, Young‐bo Yang, Mi‐ra Kim, Jihie Kim, Ji Su Park","doi":"10.1111/exsy.13675","DOIUrl":null,"url":null,"abstract":"When stress causes negative behaviours to emerge in our daily lives, it is important to intervene quickly and appropriately to control the negative problem behaviours. Questionnaires, a common method of information gathering, have the disadvantage that it is difficult to get the exact information needed due to defensive or insincere responses from subjects. As an alternative to these drawbacks, projective testing using pictures can provide the necessary information more accurately than questionnaires because the subject responds subconsciously and the direct experience expressed through pictures can be more accurate than questionnaires. Analysing hand‐drawn image data with the Wartegg Zeichen Test (WZT) is not easy. In this study, we used deep learning to analyse image data represented as pictures through WZT to predict early depression. We analyse the data of 54 people who were judged as early depression and 54 people without depression, and increase the number of people without depression to 100 and 500, and aim to study in unbalanced data. We use CNN and CNN‐SVM to analyse the drawing images of WZT's initial depression with deep learning and predict the outcome of depression. The results show that the initial depression is predicted with 92%–98% accuracy on the image data directly drawn by WZT. This is the first study to automatically analyse and predict early depression in WZT based on hand‐drawn image data using deep learning models. The extraction of features from WZT images by deep learning analysis is expected to create more research opportunities through the convergence of psychotherapy and Information and Communication Technology (ICT) technology, and is expected to have high growth potential.","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"108 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting early depression in WZT drawing image based on deep learning\",\"authors\":\"Kyung‐yeul Kim, Young‐bo Yang, Mi‐ra Kim, Jihie Kim, Ji Su Park\",\"doi\":\"10.1111/exsy.13675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When stress causes negative behaviours to emerge in our daily lives, it is important to intervene quickly and appropriately to control the negative problem behaviours. Questionnaires, a common method of information gathering, have the disadvantage that it is difficult to get the exact information needed due to defensive or insincere responses from subjects. As an alternative to these drawbacks, projective testing using pictures can provide the necessary information more accurately than questionnaires because the subject responds subconsciously and the direct experience expressed through pictures can be more accurate than questionnaires. Analysing hand‐drawn image data with the Wartegg Zeichen Test (WZT) is not easy. In this study, we used deep learning to analyse image data represented as pictures through WZT to predict early depression. We analyse the data of 54 people who were judged as early depression and 54 people without depression, and increase the number of people without depression to 100 and 500, and aim to study in unbalanced data. We use CNN and CNN‐SVM to analyse the drawing images of WZT's initial depression with deep learning and predict the outcome of depression. The results show that the initial depression is predicted with 92%–98% accuracy on the image data directly drawn by WZT. This is the first study to automatically analyse and predict early depression in WZT based on hand‐drawn image data using deep learning models. The extraction of features from WZT images by deep learning analysis is expected to create more research opportunities through the convergence of psychotherapy and Information and Communication Technology (ICT) technology, and is expected to have high growth potential.\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1111/exsy.13675\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1111/exsy.13675","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predicting early depression in WZT drawing image based on deep learning
When stress causes negative behaviours to emerge in our daily lives, it is important to intervene quickly and appropriately to control the negative problem behaviours. Questionnaires, a common method of information gathering, have the disadvantage that it is difficult to get the exact information needed due to defensive or insincere responses from subjects. As an alternative to these drawbacks, projective testing using pictures can provide the necessary information more accurately than questionnaires because the subject responds subconsciously and the direct experience expressed through pictures can be more accurate than questionnaires. Analysing hand‐drawn image data with the Wartegg Zeichen Test (WZT) is not easy. In this study, we used deep learning to analyse image data represented as pictures through WZT to predict early depression. We analyse the data of 54 people who were judged as early depression and 54 people without depression, and increase the number of people without depression to 100 and 500, and aim to study in unbalanced data. We use CNN and CNN‐SVM to analyse the drawing images of WZT's initial depression with deep learning and predict the outcome of depression. The results show that the initial depression is predicted with 92%–98% accuracy on the image data directly drawn by WZT. This is the first study to automatically analyse and predict early depression in WZT based on hand‐drawn image data using deep learning models. The extraction of features from WZT images by deep learning analysis is expected to create more research opportunities through the convergence of psychotherapy and Information and Communication Technology (ICT) technology, and is expected to have high growth potential.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.