{"title":"在线超图匹配的近似紧约束","authors":"Thorben Tröbst , Rajan Udwani","doi":"10.1016/j.orl.2024.107143","DOIUrl":null,"url":null,"abstract":"<div><p>In the online hypergraph matching problem, hyperedges of size <em>k</em> over a common ground set arrive online in adversarial order. The goal is to obtain a maximum matching (disjoint set of hyperedges). A naïve greedy algorithm for this problem achieves a competitive ratio of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>. We show that no (randomized) online algorithm has competitive ratio better than <span><math><mfrac><mrow><mn>2</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>. If edges are allowed to be assigned fractionally, we give a deterministic online algorithm with competitive ratio <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo></mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> and show that no online algorithm can have competitive ratio strictly better than <span><math><mfrac><mrow><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo></mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span>. Lastly, we give a <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo></mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> competitive algorithm for the fractional <em>edge-weighted</em> version of the problem under a free disposal assumption.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"55 ","pages":"Article 107143"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost tight bounds for online hypergraph matching\",\"authors\":\"Thorben Tröbst , Rajan Udwani\",\"doi\":\"10.1016/j.orl.2024.107143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the online hypergraph matching problem, hyperedges of size <em>k</em> over a common ground set arrive online in adversarial order. The goal is to obtain a maximum matching (disjoint set of hyperedges). A naïve greedy algorithm for this problem achieves a competitive ratio of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>. We show that no (randomized) online algorithm has competitive ratio better than <span><math><mfrac><mrow><mn>2</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>k</mi></mrow></mfrac></math></span>. If edges are allowed to be assigned fractionally, we give a deterministic online algorithm with competitive ratio <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo></mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> and show that no online algorithm can have competitive ratio strictly better than <span><math><mfrac><mrow><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo></mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span>. Lastly, we give a <span><math><mfrac><mrow><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>ln</mi><mo></mo><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> competitive algorithm for the fractional <em>edge-weighted</em> version of the problem under a free disposal assumption.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"55 \",\"pages\":\"Article 107143\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000798\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724000798","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Almost tight bounds for online hypergraph matching
In the online hypergraph matching problem, hyperedges of size k over a common ground set arrive online in adversarial order. The goal is to obtain a maximum matching (disjoint set of hyperedges). A naïve greedy algorithm for this problem achieves a competitive ratio of . We show that no (randomized) online algorithm has competitive ratio better than . If edges are allowed to be assigned fractionally, we give a deterministic online algorithm with competitive ratio and show that no online algorithm can have competitive ratio strictly better than . Lastly, we give a competitive algorithm for the fractional edge-weighted version of the problem under a free disposal assumption.
期刊介绍:
Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.