Mojtaba Homaie, Asadollah Mahboubi, Dan J. Hartmann, Ali Kadkhodaie, Reza Moussavi Harami
{"title":"以聚类法为重点的流动单元分类和特征描述:伊朗西南部德兹富勒海湾东缘高度异质碳酸盐岩储层案例研究","authors":"Mojtaba Homaie, Asadollah Mahboubi, Dan J. Hartmann, Ali Kadkhodaie, Reza Moussavi Harami","doi":"10.1007/s13202-024-01847-y","DOIUrl":null,"url":null,"abstract":"<p>Previous attempts to classify flow units in Iranian carbonate reservoirs, based on porosity and permeability, have faced challenges in correlating the rock's pore size distribution with the capillary pressure profile. The innovation of this study highlights the role of clustering techniques, such as Discrete Rock Type, Probability, Global Hydraulic Element, and Winland's Standard Chart in enhancing the reservoir's rock categorization. These techniques are integrated with established flow unit classification methods. They include Lucia, FZI, FZI*, Winland R35, and the improved stratigraphic modified Lorenz plot. The research accurately links diverse pore geometries to characteristic capillary pressure profiles, addressing heterogeneity in intricate reservoirs. The findings indicate that clustering methods can identify specific flow units, but do not significantly improve their classification. The effectiveness of these techniques varies depending on the flow unit classification method employed. For instance, probability-based methods yield surpassing results for low-porosity rocks when utilizing the FZI* approach. The discrete technique generates the highest number of flow unit classes but provides the worst result. Not all clustering techniques reveal discernible advantages when integrated with the FZI method. In the second part, the study creatively suggests that rock classification can be achieved by concurrently clustering irreducible water saturation (SWIR) and porosity in unsuccessful flow unit delineation cases. The SWIR log was estimated by establishing a smart correlation between porosity and SWIR in the pay zone, where water saturation and SWIR match. Then, the estimated saturation was dispersed throughout the reservoir. Subsequently, the neural network technique was employed to cluster and propagate the three finalized flow units. This methodology is an effective recommendation when conventional flow unit methods fail. The study also investigates influential factors causing the failure of flow unit classification methods, including pore geometry, oil wettability, and saturation in heterogeneous reservoirs.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"43 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow unit classification and characterization with emphasis on the clustering methods: a case study in a highly heterogeneous carbonate reservoir, eastern margin of Dezful Embayment, SW Iran\",\"authors\":\"Mojtaba Homaie, Asadollah Mahboubi, Dan J. Hartmann, Ali Kadkhodaie, Reza Moussavi Harami\",\"doi\":\"10.1007/s13202-024-01847-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previous attempts to classify flow units in Iranian carbonate reservoirs, based on porosity and permeability, have faced challenges in correlating the rock's pore size distribution with the capillary pressure profile. The innovation of this study highlights the role of clustering techniques, such as Discrete Rock Type, Probability, Global Hydraulic Element, and Winland's Standard Chart in enhancing the reservoir's rock categorization. These techniques are integrated with established flow unit classification methods. They include Lucia, FZI, FZI*, Winland R35, and the improved stratigraphic modified Lorenz plot. The research accurately links diverse pore geometries to characteristic capillary pressure profiles, addressing heterogeneity in intricate reservoirs. The findings indicate that clustering methods can identify specific flow units, but do not significantly improve their classification. The effectiveness of these techniques varies depending on the flow unit classification method employed. For instance, probability-based methods yield surpassing results for low-porosity rocks when utilizing the FZI* approach. The discrete technique generates the highest number of flow unit classes but provides the worst result. Not all clustering techniques reveal discernible advantages when integrated with the FZI method. In the second part, the study creatively suggests that rock classification can be achieved by concurrently clustering irreducible water saturation (SWIR) and porosity in unsuccessful flow unit delineation cases. The SWIR log was estimated by establishing a smart correlation between porosity and SWIR in the pay zone, where water saturation and SWIR match. Then, the estimated saturation was dispersed throughout the reservoir. Subsequently, the neural network technique was employed to cluster and propagate the three finalized flow units. This methodology is an effective recommendation when conventional flow unit methods fail. The study also investigates influential factors causing the failure of flow unit classification methods, including pore geometry, oil wettability, and saturation in heterogeneous reservoirs.</p>\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-024-01847-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01847-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Flow unit classification and characterization with emphasis on the clustering methods: a case study in a highly heterogeneous carbonate reservoir, eastern margin of Dezful Embayment, SW Iran
Previous attempts to classify flow units in Iranian carbonate reservoirs, based on porosity and permeability, have faced challenges in correlating the rock's pore size distribution with the capillary pressure profile. The innovation of this study highlights the role of clustering techniques, such as Discrete Rock Type, Probability, Global Hydraulic Element, and Winland's Standard Chart in enhancing the reservoir's rock categorization. These techniques are integrated with established flow unit classification methods. They include Lucia, FZI, FZI*, Winland R35, and the improved stratigraphic modified Lorenz plot. The research accurately links diverse pore geometries to characteristic capillary pressure profiles, addressing heterogeneity in intricate reservoirs. The findings indicate that clustering methods can identify specific flow units, but do not significantly improve their classification. The effectiveness of these techniques varies depending on the flow unit classification method employed. For instance, probability-based methods yield surpassing results for low-porosity rocks when utilizing the FZI* approach. The discrete technique generates the highest number of flow unit classes but provides the worst result. Not all clustering techniques reveal discernible advantages when integrated with the FZI method. In the second part, the study creatively suggests that rock classification can be achieved by concurrently clustering irreducible water saturation (SWIR) and porosity in unsuccessful flow unit delineation cases. The SWIR log was estimated by establishing a smart correlation between porosity and SWIR in the pay zone, where water saturation and SWIR match. Then, the estimated saturation was dispersed throughout the reservoir. Subsequently, the neural network technique was employed to cluster and propagate the three finalized flow units. This methodology is an effective recommendation when conventional flow unit methods fail. The study also investigates influential factors causing the failure of flow unit classification methods, including pore geometry, oil wettability, and saturation in heterogeneous reservoirs.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies