定量概率关系胡尔逻辑

Martin Avanzini, Gilles Barthe, Davide Davoli, Benjamin Grégoire
{"title":"定量概率关系胡尔逻辑","authors":"Martin Avanzini, Gilles Barthe, Davide Davoli, Benjamin Grégoire","doi":"arxiv-2407.17127","DOIUrl":null,"url":null,"abstract":"We introduce eRHL, a program logic for reasoning about relational expectation\nproperties of pairs of probabilistic programs. eRHL is quantitative, i.e., its\npre- and post-conditions take values in the extended non-negative reals. Thanks\nto its quantitative assertions, eRHL overcomes randomness alignment\nrestrictions from prior logics, including PRHL, a popular relational program\nlogic used to reason about security of cryptographic constructions, and apRHL,\na variant of PRHL for differential privacy. As a result, eRHL is the first\nrelational probabilistic program logic to be supported by non-trivial soundness\nand completeness results for all almost surely terminating programs. We show\nthat eRHL is sound and complete with respect to program equivalence,\nstatistical distance, and differential privacy. We also show that every PRHL\njudgment is valid iff it is provable in eRHL. We showcase the practical\nbenefits of eRHL with examples that are beyond reach of PRHL and apRHL.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative probabilistic relational Hoare logic\",\"authors\":\"Martin Avanzini, Gilles Barthe, Davide Davoli, Benjamin Grégoire\",\"doi\":\"arxiv-2407.17127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce eRHL, a program logic for reasoning about relational expectation\\nproperties of pairs of probabilistic programs. eRHL is quantitative, i.e., its\\npre- and post-conditions take values in the extended non-negative reals. Thanks\\nto its quantitative assertions, eRHL overcomes randomness alignment\\nrestrictions from prior logics, including PRHL, a popular relational program\\nlogic used to reason about security of cryptographic constructions, and apRHL,\\na variant of PRHL for differential privacy. As a result, eRHL is the first\\nrelational probabilistic program logic to be supported by non-trivial soundness\\nand completeness results for all almost surely terminating programs. We show\\nthat eRHL is sound and complete with respect to program equivalence,\\nstatistical distance, and differential privacy. We also show that every PRHL\\njudgment is valid iff it is provable in eRHL. We showcase the practical\\nbenefits of eRHL with examples that are beyond reach of PRHL and apRHL.\",\"PeriodicalId\":501208,\"journal\":{\"name\":\"arXiv - CS - Logic in Computer Science\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的 eRHL 是一种程序逻辑,用于推理概率程序对的关系期望属性。eRHL 是定量的,即它的前置条件和后置条件在扩展的非负实数中取值。得益于其定量断言,eRHL 克服了先前逻辑中的随机性对齐限制,包括用于推理密码构造安全性的流行关系程序逻辑 PRHL,以及用于差分隐私的 PRHL 变体 apRHL。因此,eRHL 是第一个为所有几乎肯定终止的程序提供非难健全性和完备性结果支持的关系型概率程序逻辑。我们证明了 eRHL 在程序等价性、统计距离和差分隐私性方面是健全和完备的。我们还证明,如果每个 PRHL 判断在 eRHL 中是可证明的,那么它就是有效的。我们用 PRHL 和 apRHL 无法解决的例子展示了 eRHL 的实用优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A quantitative probabilistic relational Hoare logic
We introduce eRHL, a program logic for reasoning about relational expectation properties of pairs of probabilistic programs. eRHL is quantitative, i.e., its pre- and post-conditions take values in the extended non-negative reals. Thanks to its quantitative assertions, eRHL overcomes randomness alignment restrictions from prior logics, including PRHL, a popular relational program logic used to reason about security of cryptographic constructions, and apRHL, a variant of PRHL for differential privacy. As a result, eRHL is the first relational probabilistic program logic to be supported by non-trivial soundness and completeness results for all almost surely terminating programs. We show that eRHL is sound and complete with respect to program equivalence, statistical distance, and differential privacy. We also show that every PRHL judgment is valid iff it is provable in eRHL. We showcase the practical benefits of eRHL with examples that are beyond reach of PRHL and apRHL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Imperative Language for Verified Exact Real-Number Computation On Randomized Computational Models and Complexity Classes: a Historical Overview Computation and Complexity of Preference Inference Based on Hierarchical Models Stability Property for the Call-by-Value $λ$-calculus through Taylor Expansion Resource approximation for the $λμ$-calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1