用于去除恶臭气体的氨基改性间苯二酚-甲醛气凝胶研究

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED Journal of Porous Materials Pub Date : 2024-07-25 DOI:10.1007/s10934-024-01661-1
Xingna Zhu, Yuan Liu, Xueling Wu, Zhihua Zhang, Jun Shen
{"title":"用于去除恶臭气体的氨基改性间苯二酚-甲醛气凝胶研究","authors":"Xingna Zhu,&nbsp;Yuan Liu,&nbsp;Xueling Wu,&nbsp;Zhihua Zhang,&nbsp;Jun Shen","doi":"10.1007/s10934-024-01661-1","DOIUrl":null,"url":null,"abstract":"<div><p>When it comes to owning pets, pet odor is a major concern for many individuals. Ammonia (NH<sub>3</sub>) and hydrogen sulfide (H<sub>2</sub>S) are the primary odor components that have negative effects on human life. Therefore, there is an urgent need to develop a deodorizing material with high NH<sub>3</sub> and H<sub>2</sub>S adsorption capacity. In this study, Resorcinol-formaldehyde (RF) aerogels containing amine groups (RF-Mx) were prepared using the sol-gel method and atmospheric pressure drying technique. Melamine was used as a modifier. The specific surface area of the modified aerogel was 119 m<sup>2</sup>/g with an average pore size of 12 nm when the melamine addition was 20%. The adsorption capacity of RF-M20 for odor was the highest (NH<sub>3</sub>: 593.8 mg/g, H<sub>2</sub>S: 640 mg/g), which was significantly superior to the unmodified sample. In addition, the adsorption capacity of RF-M20 for H<sub>2</sub>S exceeded that of commercial activated carbon. The results concluded that the introduction of amine groups and the higher microporous specific surface area benefited the chemical and physical adsorption of gases, effectively improving the adsorbent’s capacity to capture NH<sub>3</sub> and H<sub>2</sub>S. The preparation method is not only efficient in enhancing the odor adsorption capacity but also simple and cost-effective to operate, showing promising potential for industrial applications.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 6","pages":"2127 - 2138"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of amino-modified resorcinol-formaldehyde aerogels for odorous gas removal\",\"authors\":\"Xingna Zhu,&nbsp;Yuan Liu,&nbsp;Xueling Wu,&nbsp;Zhihua Zhang,&nbsp;Jun Shen\",\"doi\":\"10.1007/s10934-024-01661-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When it comes to owning pets, pet odor is a major concern for many individuals. Ammonia (NH<sub>3</sub>) and hydrogen sulfide (H<sub>2</sub>S) are the primary odor components that have negative effects on human life. Therefore, there is an urgent need to develop a deodorizing material with high NH<sub>3</sub> and H<sub>2</sub>S adsorption capacity. In this study, Resorcinol-formaldehyde (RF) aerogels containing amine groups (RF-Mx) were prepared using the sol-gel method and atmospheric pressure drying technique. Melamine was used as a modifier. The specific surface area of the modified aerogel was 119 m<sup>2</sup>/g with an average pore size of 12 nm when the melamine addition was 20%. The adsorption capacity of RF-M20 for odor was the highest (NH<sub>3</sub>: 593.8 mg/g, H<sub>2</sub>S: 640 mg/g), which was significantly superior to the unmodified sample. In addition, the adsorption capacity of RF-M20 for H<sub>2</sub>S exceeded that of commercial activated carbon. The results concluded that the introduction of amine groups and the higher microporous specific surface area benefited the chemical and physical adsorption of gases, effectively improving the adsorbent’s capacity to capture NH<sub>3</sub> and H<sub>2</sub>S. The preparation method is not only efficient in enhancing the odor adsorption capacity but also simple and cost-effective to operate, showing promising potential for industrial applications.</p></div>\",\"PeriodicalId\":660,\"journal\":{\"name\":\"Journal of Porous Materials\",\"volume\":\"31 6\",\"pages\":\"2127 - 2138\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10934-024-01661-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01661-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

说到养宠物,宠物的气味是许多人最关心的问题。氨(NH3)和硫化氢(H2S)是对人类生活产生负面影响的主要臭味成分。因此,迫切需要开发一种具有高 NH3 和 H2S 吸附能力的除臭材料。本研究采用溶胶-凝胶法和常压干燥技术制备了含有胺基团的间苯二酚-甲醛(RF)气凝胶(RF-Mx)。三聚氰胺被用作改性剂。三聚氰胺添加量为 20% 时,改性气凝胶的比表面积为 119 m2/g,平均孔径为 12 nm。RF-M20 对臭气的吸附能力最高(NH3:593.8 mg/g,H2S:640 mg/g),明显优于未改性样品。此外,RF-M20 对 H2S 的吸附能力也超过了商用活性炭。结果表明,胺基团的引入和更高的微孔比表面积有利于气体的化学和物理吸附,有效提高了吸附剂捕获 NH3 和 H2S 的能力。该制备方法不仅能有效提高臭气吸附能力,而且操作简单、成本低廉,具有广阔的工业应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of amino-modified resorcinol-formaldehyde aerogels for odorous gas removal

When it comes to owning pets, pet odor is a major concern for many individuals. Ammonia (NH3) and hydrogen sulfide (H2S) are the primary odor components that have negative effects on human life. Therefore, there is an urgent need to develop a deodorizing material with high NH3 and H2S adsorption capacity. In this study, Resorcinol-formaldehyde (RF) aerogels containing amine groups (RF-Mx) were prepared using the sol-gel method and atmospheric pressure drying technique. Melamine was used as a modifier. The specific surface area of the modified aerogel was 119 m2/g with an average pore size of 12 nm when the melamine addition was 20%. The adsorption capacity of RF-M20 for odor was the highest (NH3: 593.8 mg/g, H2S: 640 mg/g), which was significantly superior to the unmodified sample. In addition, the adsorption capacity of RF-M20 for H2S exceeded that of commercial activated carbon. The results concluded that the introduction of amine groups and the higher microporous specific surface area benefited the chemical and physical adsorption of gases, effectively improving the adsorbent’s capacity to capture NH3 and H2S. The preparation method is not only efficient in enhancing the odor adsorption capacity but also simple and cost-effective to operate, showing promising potential for industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
期刊最新文献
Correction: One-step synthesis of CuO/MCM-41 nanocomposites and their application in photocatalytic degradation of dyes Modification of SBA-15 for stabilizing supported oxides Lotus leaf-derived capacitive carbon for zinc-ion hybrid supercapacitors prepared by one-step molten salt carbonization Influence of various templates on the performance of MFI zeolite in catalytic synthesis of trioxane Facile synthesis of copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1