{"title":"研究一种新型的普拉德-威利综合征小鼠模型,并对 Necdin 和 Magel2 进行验证","authors":"Pierre-Yves Barelle, Alicia Sicardi, Fabienne Schaller, Julie Buron, Denis Becquet, Felix Omnes, Francoise Watrin, Catarina Santos, Clement Menuet, Anne-Marie Francois-Bellan, Emilie Caron, Jessica Klucznik, Vincent Prevot, Sebastien G Bouret, Francoise Muscatelli","doi":"10.1101/2024.07.24.604909","DOIUrl":null,"url":null,"abstract":"Prader-Willi syndrome (PWS) is a multigenic disorder caused by the loss of seven contiguous paternally expressed genes. Mouse models with inactivation of all PWS genes are lethal. Knockout (KO) mouse models for each candidate gene were generated, but they lack the functional interactions between PWS genes. Here, we revealed an interplay between Necdin and Magel2 PWS genes and generated a novel mouse model (named Madin) with a deletion including both genes. A subset of Madin KO mice showed neonatal lethality. Behaviorally, surviving mutant mice exhibited sensory delays during infancy and alterations in social exploration at adulthood. Madin KO mice had a lower body weight before weaning, persisting after weaning in males only, with reduced fat mass and improved glucose tolerance. Delayed sexual maturation and altered timing of puberty onset were observed in mutant mice. Adult Madin KO mice displayed increased ventilation and a persistent increase in apneas following a hypercapnic challenge. Transcriptomics analyses revealed a dysregulation of key circadian genes and alterations of genes associated with axonal function that were also found in the hypothalamus of patients with PWS. At neuroanatomical levels, we report an impaired maturation of oxytocin neurons and a disrupted development of melanocortin circuits. Together, these data indicate that the Madin KO mouse is a reliable and more genetically relevant model for the study of PWS.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of a Novel Mouse Model of Prader-Willi Syndrome with Invalidation of Necdin and Magel2\",\"authors\":\"Pierre-Yves Barelle, Alicia Sicardi, Fabienne Schaller, Julie Buron, Denis Becquet, Felix Omnes, Francoise Watrin, Catarina Santos, Clement Menuet, Anne-Marie Francois-Bellan, Emilie Caron, Jessica Klucznik, Vincent Prevot, Sebastien G Bouret, Francoise Muscatelli\",\"doi\":\"10.1101/2024.07.24.604909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prader-Willi syndrome (PWS) is a multigenic disorder caused by the loss of seven contiguous paternally expressed genes. Mouse models with inactivation of all PWS genes are lethal. Knockout (KO) mouse models for each candidate gene were generated, but they lack the functional interactions between PWS genes. Here, we revealed an interplay between Necdin and Magel2 PWS genes and generated a novel mouse model (named Madin) with a deletion including both genes. A subset of Madin KO mice showed neonatal lethality. Behaviorally, surviving mutant mice exhibited sensory delays during infancy and alterations in social exploration at adulthood. Madin KO mice had a lower body weight before weaning, persisting after weaning in males only, with reduced fat mass and improved glucose tolerance. Delayed sexual maturation and altered timing of puberty onset were observed in mutant mice. Adult Madin KO mice displayed increased ventilation and a persistent increase in apneas following a hypercapnic challenge. Transcriptomics analyses revealed a dysregulation of key circadian genes and alterations of genes associated with axonal function that were also found in the hypothalamus of patients with PWS. At neuroanatomical levels, we report an impaired maturation of oxytocin neurons and a disrupted development of melanocortin circuits. Together, these data indicate that the Madin KO mouse is a reliable and more genetically relevant model for the study of PWS.\",\"PeriodicalId\":501213,\"journal\":{\"name\":\"bioRxiv - Systems Biology\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.24.604909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.24.604909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of a Novel Mouse Model of Prader-Willi Syndrome with Invalidation of Necdin and Magel2
Prader-Willi syndrome (PWS) is a multigenic disorder caused by the loss of seven contiguous paternally expressed genes. Mouse models with inactivation of all PWS genes are lethal. Knockout (KO) mouse models for each candidate gene were generated, but they lack the functional interactions between PWS genes. Here, we revealed an interplay between Necdin and Magel2 PWS genes and generated a novel mouse model (named Madin) with a deletion including both genes. A subset of Madin KO mice showed neonatal lethality. Behaviorally, surviving mutant mice exhibited sensory delays during infancy and alterations in social exploration at adulthood. Madin KO mice had a lower body weight before weaning, persisting after weaning in males only, with reduced fat mass and improved glucose tolerance. Delayed sexual maturation and altered timing of puberty onset were observed in mutant mice. Adult Madin KO mice displayed increased ventilation and a persistent increase in apneas following a hypercapnic challenge. Transcriptomics analyses revealed a dysregulation of key circadian genes and alterations of genes associated with axonal function that were also found in the hypothalamus of patients with PWS. At neuroanatomical levels, we report an impaired maturation of oxytocin neurons and a disrupted development of melanocortin circuits. Together, these data indicate that the Madin KO mouse is a reliable and more genetically relevant model for the study of PWS.