基于改进人工势场方法的多车编队控制研究

Hao Zhang, Chao Wei, Yuanhao He
{"title":"基于改进人工势场方法的多车编队控制研究","authors":"Hao Zhang, Chao Wei, Yuanhao He","doi":"10.1177/09544070241265392","DOIUrl":null,"url":null,"abstract":"Multi-vehicle formation can perform various special tasks in unstructured environment. How to take into account the safety of vehicles in avoiding obstacles and the ability to maintain formation has a certain research value. In this paper, the four-circle model of vehicle is established first, and the circle radius is adjusted according to the state of vehicle, so as to describe the safety boundary of vehicle. The improved RRT algorithm is used for the whole route planning, and the discrete path points are used as vehicle guidance. Then the artificial potential field is constructed, and the formation coordination potential field is proposed, so that the vehicles can cooperate with other vehicles to keep the preset formation as far as possible when avoiding obstacles. Then the control quantity of the vehicle is calculated according to the force condition of the vehicle in the potential field by the double exponential sliding mode control method. Finally, the effectiveness of the method is verified by the simulation experiments of triangle formation and circular formation under different working conditions, and the formation error is reduced by about 20%.","PeriodicalId":54568,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","volume":"28 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on multi-vehicle formation control based on improved artificial potential field method\",\"authors\":\"Hao Zhang, Chao Wei, Yuanhao He\",\"doi\":\"10.1177/09544070241265392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-vehicle formation can perform various special tasks in unstructured environment. How to take into account the safety of vehicles in avoiding obstacles and the ability to maintain formation has a certain research value. In this paper, the four-circle model of vehicle is established first, and the circle radius is adjusted according to the state of vehicle, so as to describe the safety boundary of vehicle. The improved RRT algorithm is used for the whole route planning, and the discrete path points are used as vehicle guidance. Then the artificial potential field is constructed, and the formation coordination potential field is proposed, so that the vehicles can cooperate with other vehicles to keep the preset formation as far as possible when avoiding obstacles. Then the control quantity of the vehicle is calculated according to the force condition of the vehicle in the potential field by the double exponential sliding mode control method. Finally, the effectiveness of the method is verified by the simulation experiments of triangle formation and circular formation under different working conditions, and the formation error is reduced by about 20%.\",\"PeriodicalId\":54568,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241265392\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241265392","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

多车编队可以在非结构化环境中执行各种特殊任务。如何兼顾车辆避障的安全性和保持队形的能力具有一定的研究价值。本文首先建立了车辆的四圆模型,并根据车辆状态调整圆半径,从而描述车辆的安全边界。采用改进的 RRT 算法进行全程路径规划,以离散路径点作为车辆制导。然后构建人工势场,提出队形协调势场,使车辆在避障时能与其他车辆合作,尽量保持预设队形。然后根据车辆在势场中的受力情况,通过双指数滑模控制方法计算出车辆的控制量。最后,通过不同工况下三角形编队和圆形编队的仿真实验验证了该方法的有效性,编队误差减少了约 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on multi-vehicle formation control based on improved artificial potential field method
Multi-vehicle formation can perform various special tasks in unstructured environment. How to take into account the safety of vehicles in avoiding obstacles and the ability to maintain formation has a certain research value. In this paper, the four-circle model of vehicle is established first, and the circle radius is adjusted according to the state of vehicle, so as to describe the safety boundary of vehicle. The improved RRT algorithm is used for the whole route planning, and the discrete path points are used as vehicle guidance. Then the artificial potential field is constructed, and the formation coordination potential field is proposed, so that the vehicles can cooperate with other vehicles to keep the preset formation as far as possible when avoiding obstacles. Then the control quantity of the vehicle is calculated according to the force condition of the vehicle in the potential field by the double exponential sliding mode control method. Finally, the effectiveness of the method is verified by the simulation experiments of triangle formation and circular formation under different working conditions, and the formation error is reduced by about 20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
17.60%
发文量
263
审稿时长
3.5 months
期刊介绍: The Journal of Automobile Engineering is an established, high quality multi-disciplinary journal which publishes the very best peer-reviewed science and engineering in the field.
期刊最新文献
Comparison of simplex and duplex drum brakes linings with transverse slots in vehicles Scenario-aware clustered federated learning for vehicle trajectory prediction with non-IID data Vehicle trajectory prediction method integrating spatiotemporal relationships with hybrid time-step scene interaction Research on Obstacle Avoidance Strategy of Automated Heavy Vehicle Platoon in High-Speed Scenarios Cooperative energy optimal control involving optimization of longitudinal motion, powertrain, and air conditioning systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1