控制高维数据中中介选择的错误发现率

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae064
Ran Dai, Ruiyang Li, Seonjoo Lee, Ying Liu
{"title":"控制高维数据中中介选择的错误发现率","authors":"Ran Dai, Ruiyang Li, Seonjoo Lee, Ying Liu","doi":"10.1093/biomtc/ujae064","DOIUrl":null,"url":null,"abstract":"<p><p>The need to select mediators from a high dimensional data source, such as neuroimaging data and genetic data, arises in much scientific research. In this work, we formulate a multiple-hypothesis testing framework for mediator selection from a high-dimensional candidate set, and propose a method, which extends the recent development in false discovery rate (FDR)-controlled variable selection with knockoff to select mediators with FDR control. We show that the proposed method and algorithm achieved finite sample FDR control. We present extensive simulation results to demonstrate the power and finite sample performance compared with the existing method. Lastly, we demonstrate the method for analyzing the Adolescent Brain Cognitive Development (ABCD) study, in which the proposed method selects several resting-state functional magnetic resonance imaging connectivity markers as mediators for the relationship between adverse childhood events and the crystallized composite score in the NIH toolbox.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285112/pdf/","citationCount":"0","resultStr":"{\"title\":\"Controlling false discovery rate for mediator selection in high-dimensional data.\",\"authors\":\"Ran Dai, Ruiyang Li, Seonjoo Lee, Ying Liu\",\"doi\":\"10.1093/biomtc/ujae064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The need to select mediators from a high dimensional data source, such as neuroimaging data and genetic data, arises in much scientific research. In this work, we formulate a multiple-hypothesis testing framework for mediator selection from a high-dimensional candidate set, and propose a method, which extends the recent development in false discovery rate (FDR)-controlled variable selection with knockoff to select mediators with FDR control. We show that the proposed method and algorithm achieved finite sample FDR control. We present extensive simulation results to demonstrate the power and finite sample performance compared with the existing method. Lastly, we demonstrate the method for analyzing the Adolescent Brain Cognitive Development (ABCD) study, in which the proposed method selects several resting-state functional magnetic resonance imaging connectivity markers as mediators for the relationship between adverse childhood events and the crystallized composite score in the NIH toolbox.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae064\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

许多科学研究都需要从神经影像数据和遗传数据等高维数据源中选择中介因子。在这项工作中,我们提出了一个从高维候选集中选择中介因子的多重假设检验框架,并提出了一种方法,该方法扩展了最近在虚假发现率(FDR)控制变量选择方面的发展,并将其用于选择具有 FDR 控制的中介因子。我们证明了所提出的方法和算法实现了有限样本 FDR 控制。我们展示了大量仿真结果,证明了与现有方法相比,该方法的强大功能和有限样本性能。最后,我们展示了分析青少年脑认知发展(ABCD)研究的方法,在该研究中,所提出的方法选择了几个静息态功能磁共振成像连接标志物,作为童年不良事件与美国国立卫生研究院工具箱中的结晶综合评分之间关系的中介因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlling false discovery rate for mediator selection in high-dimensional data.

The need to select mediators from a high dimensional data source, such as neuroimaging data and genetic data, arises in much scientific research. In this work, we formulate a multiple-hypothesis testing framework for mediator selection from a high-dimensional candidate set, and propose a method, which extends the recent development in false discovery rate (FDR)-controlled variable selection with knockoff to select mediators with FDR control. We show that the proposed method and algorithm achieved finite sample FDR control. We present extensive simulation results to demonstrate the power and finite sample performance compared with the existing method. Lastly, we demonstrate the method for analyzing the Adolescent Brain Cognitive Development (ABCD) study, in which the proposed method selects several resting-state functional magnetic resonance imaging connectivity markers as mediators for the relationship between adverse childhood events and the crystallized composite score in the NIH toolbox.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1