重塑肝脏免疫微环境,清除 T 细胞陷阱,提高肝转移免疫疗法的疗效。

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Controlled Release Pub Date : 2024-08-05 DOI:10.1016/j.jconrel.2024.07.057
{"title":"重塑肝脏免疫微环境,清除 T 细胞陷阱,提高肝转移免疫疗法的疗效。","authors":"","doi":"10.1016/j.jconrel.2024.07.057","DOIUrl":null,"url":null,"abstract":"<div><p>Immune checkpoint inhibitors (ICIs) exhibit compromised therapeutic efficacy in many patients with advanced cancers, particularly those with liver metastases. Much of this incapability can be ascribed as an irresponsiveness resulting from the “cold” hepatic tumor microenvironment that acts as T cell “traps” for which there currently lack countermeasures. We report a novel nanomedicine that converts the hepatic immune microenvironment to a “hot” phenotype by targeting hepatic macrophage-centric T cell elimination. Using the nanomedicine, composed of KIRA6 (an endothelium reticulum stress inhibitor), α-Tocopherol nanoemulsions, and anti-PD1 antibodies, we found its potency in murine models of orthotopic colorectal tumors and hepatic metastases, restoring immune responses and enhancing anti-tumor effects. A post-treatment scrutiny of the immune microenvironment landscape in the liver reveals repolarization of immunosuppressive hepatic macrophages, upregulation of Th1-like effector CD4<sup>+</sup> T cells, and rejuvenation of dendritic cells along with CD8<sup>+</sup> T cells. These findings suggest adaptations of liver-centric immune milieu modulation strategies to improve the efficacy of ICIs for a variety of “cold” tumors and their liver metastases.</p></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remodeling the hepatic immune microenvironment and demolishing T cell traps to enhance immunotherapy efficacy in liver metastasis\",\"authors\":\"\",\"doi\":\"10.1016/j.jconrel.2024.07.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Immune checkpoint inhibitors (ICIs) exhibit compromised therapeutic efficacy in many patients with advanced cancers, particularly those with liver metastases. Much of this incapability can be ascribed as an irresponsiveness resulting from the “cold” hepatic tumor microenvironment that acts as T cell “traps” for which there currently lack countermeasures. We report a novel nanomedicine that converts the hepatic immune microenvironment to a “hot” phenotype by targeting hepatic macrophage-centric T cell elimination. Using the nanomedicine, composed of KIRA6 (an endothelium reticulum stress inhibitor), α-Tocopherol nanoemulsions, and anti-PD1 antibodies, we found its potency in murine models of orthotopic colorectal tumors and hepatic metastases, restoring immune responses and enhancing anti-tumor effects. A post-treatment scrutiny of the immune microenvironment landscape in the liver reveals repolarization of immunosuppressive hepatic macrophages, upregulation of Th1-like effector CD4<sup>+</sup> T cells, and rejuvenation of dendritic cells along with CD8<sup>+</sup> T cells. These findings suggest adaptations of liver-centric immune milieu modulation strategies to improve the efficacy of ICIs for a variety of “cold” tumors and their liver metastases.</p></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365924005157\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365924005157","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

免疫检查点抑制剂(ICIs)对许多晚期癌症患者,尤其是肝转移患者的疗效大打折扣。这种无能在很大程度上可归因于 "冷 "肝肿瘤微环境导致的反应迟钝,而这种微环境就像 T 细胞的 "陷阱",目前尚无应对措施。我们报告了一种新型纳米药物,这种药物通过消除以肝脏巨噬细胞为中心的 T 细胞,将肝脏免疫微环境转化为 "热 "表型。这种纳米药物由 KIRA6(一种内皮细胞网状结构应激抑制剂)、α-生育酚纳米乳剂和抗 PD1 抗体组成,我们发现它在正位结直肠肿瘤和肝转移瘤的小鼠模型中发挥了效力,恢复了免疫反应并增强了抗肿瘤效果。治疗后对肝脏免疫微环境的检查显示,免疫抑制性肝巨噬细胞重新极化,Th1样效应CD4+ T细胞上调,树突状细胞和CD8+ T细胞重新焕发活力。这些研究结果表明,以肝脏为中心的免疫环境调控策略可改善 ICIs 对各种 "冷 "肿瘤及其肝转移瘤的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remodeling the hepatic immune microenvironment and demolishing T cell traps to enhance immunotherapy efficacy in liver metastasis

Immune checkpoint inhibitors (ICIs) exhibit compromised therapeutic efficacy in many patients with advanced cancers, particularly those with liver metastases. Much of this incapability can be ascribed as an irresponsiveness resulting from the “cold” hepatic tumor microenvironment that acts as T cell “traps” for which there currently lack countermeasures. We report a novel nanomedicine that converts the hepatic immune microenvironment to a “hot” phenotype by targeting hepatic macrophage-centric T cell elimination. Using the nanomedicine, composed of KIRA6 (an endothelium reticulum stress inhibitor), α-Tocopherol nanoemulsions, and anti-PD1 antibodies, we found its potency in murine models of orthotopic colorectal tumors and hepatic metastases, restoring immune responses and enhancing anti-tumor effects. A post-treatment scrutiny of the immune microenvironment landscape in the liver reveals repolarization of immunosuppressive hepatic macrophages, upregulation of Th1-like effector CD4+ T cells, and rejuvenation of dendritic cells along with CD8+ T cells. These findings suggest adaptations of liver-centric immune milieu modulation strategies to improve the efficacy of ICIs for a variety of “cold” tumors and their liver metastases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
期刊最新文献
Combination non-targeted and sGRP78-targeted nanoparticle drug delivery outperforms either component to treat metastatic ovarian cancer Elastase-targeting biomimic nanoplatform for neurovascular remodeling by inhibiting NETosis mediated AlM2 inflammasome activation in ischemic stroke Endoplasmic reticulum-targeted biomimetic nanoparticles induce apoptosis and ferroptosis by regulating endoplasmic reticulum function in colon cancer Optimizing high-intensity focused ultrasound-induced immunogenic cell-death using passive cavitation mapping as a monitoring tool Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1