利用杠铃加速度来确定单次最大值的耸肩跳。

IF 2.5 2区 医学 Q2 SPORT SCIENCES Journal of Strength and Conditioning Research Pub Date : 2024-08-01 DOI:10.1519/JSC.0000000000004872
Baylee S Techmanski, Cameron R Kissick, Irineu Loturco, Timothy J Suchomel
{"title":"利用杠铃加速度来确定单次最大值的耸肩跳。","authors":"Baylee S Techmanski, Cameron R Kissick, Irineu Loturco, Timothy J Suchomel","doi":"10.1519/JSC.0000000000004872","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Techmanski, BS, Kissick, CR, Loturco, I, and Suchomel, TJ. Using barbell acceleration to determine the 1 repetition maximum of the jump shrug. J Strength Cond Res 38(8): 1486-1493, 2024-The purpose of this study was to determine the 1 repetition maximum (1RM) of the jump shrug (JS) using the barbell acceleration characteristics of repetitions performed with relative percentages of the hang power clean (HPC). Fifteen resistance-trained men (age = 25.5 ± 4.5 years, body mass = 88.5 ± 15.7 kg, height = 176.1 ± 8.5 cm, relative 1RM HPC = 1.3 ± 0.2 kg·kg-1) completed 2 testing sessions that included performing a 1RM HPC and JS repetitions with 20, 40, 60, 80, and 100% of their 1RM HPC. A linear position transducer was used to determine concentric duration and the percentage of the propulsive phase (P%) where barbell acceleration was greater than gravitational acceleration (i.e., a>-9.81 m·s-2). Two 1 way repeated measures ANOVA were used to compare each variable across loads, whereas Hedge's g effect sizes were used to examine the magnitude of the differences. Concentric duration ranged from 449.7 to 469.8 milliseconds and did not vary significantly between loads (p = 0.253; g = 0.20-0.39). The P% was 57.4 ± 7.2%, 64.8 ± 5.9%, 73.2 ± 4.3%, 78.7 ± 4.0%, and 80.3 ± 3.5% when using 20, 40, 60, 80, and 100% 1RM HPC, respectively. P% produced during the 80 and 100% 1RM loads were significantly greater than those at 20, 40, and 60% 1RM (p < 0.01, g = 1.30-3.90). In addition, P% was significantly greater during 60% 1RM compared with both 20 and 40% 1RM (p < 0.01, g = 1.58-2.58) and 40% was greater than 20% 1RM (p = 0.003, g = 1.09). A braking phase was present during each load and, thus, a 1RM JS load was not established. Heavier loads may be needed to achieve a 100% propulsive phase when using this method.</p>","PeriodicalId":17129,"journal":{"name":"Journal of Strength and Conditioning Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Barbell Acceleration to Determine the 1 Repetition Maximum of the Jump Shrug.\",\"authors\":\"Baylee S Techmanski, Cameron R Kissick, Irineu Loturco, Timothy J Suchomel\",\"doi\":\"10.1519/JSC.0000000000004872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Techmanski, BS, Kissick, CR, Loturco, I, and Suchomel, TJ. Using barbell acceleration to determine the 1 repetition maximum of the jump shrug. J Strength Cond Res 38(8): 1486-1493, 2024-The purpose of this study was to determine the 1 repetition maximum (1RM) of the jump shrug (JS) using the barbell acceleration characteristics of repetitions performed with relative percentages of the hang power clean (HPC). Fifteen resistance-trained men (age = 25.5 ± 4.5 years, body mass = 88.5 ± 15.7 kg, height = 176.1 ± 8.5 cm, relative 1RM HPC = 1.3 ± 0.2 kg·kg-1) completed 2 testing sessions that included performing a 1RM HPC and JS repetitions with 20, 40, 60, 80, and 100% of their 1RM HPC. A linear position transducer was used to determine concentric duration and the percentage of the propulsive phase (P%) where barbell acceleration was greater than gravitational acceleration (i.e., a>-9.81 m·s-2). Two 1 way repeated measures ANOVA were used to compare each variable across loads, whereas Hedge's g effect sizes were used to examine the magnitude of the differences. Concentric duration ranged from 449.7 to 469.8 milliseconds and did not vary significantly between loads (p = 0.253; g = 0.20-0.39). The P% was 57.4 ± 7.2%, 64.8 ± 5.9%, 73.2 ± 4.3%, 78.7 ± 4.0%, and 80.3 ± 3.5% when using 20, 40, 60, 80, and 100% 1RM HPC, respectively. P% produced during the 80 and 100% 1RM loads were significantly greater than those at 20, 40, and 60% 1RM (p < 0.01, g = 1.30-3.90). In addition, P% was significantly greater during 60% 1RM compared with both 20 and 40% 1RM (p < 0.01, g = 1.58-2.58) and 40% was greater than 20% 1RM (p = 0.003, g = 1.09). A braking phase was present during each load and, thus, a 1RM JS load was not established. Heavier loads may be needed to achieve a 100% propulsive phase when using this method.</p>\",\"PeriodicalId\":17129,\"journal\":{\"name\":\"Journal of Strength and Conditioning Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strength and Conditioning Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1519/JSC.0000000000004872\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strength and Conditioning Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1519/JSC.0000000000004872","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要: Techmanski、BS、Kissick、CR、Loturco、I 和 Suchomel、TJ。利用杠铃加速度确定跳耸肩的 1 次最大值。J Strength Cond Res 38(8):1486-1493,2024--本研究的目的是利用杠铃加速度特性,确定以相对百分比进行的悬垂力量清扫(HPC)重复次数的跳耸肩(JS)的最大重复次数(1RM)。15 名阻力训练男子(年龄 = 25.5 ± 4.5 岁,体重 = 88.5 ± 15.7 千克,身高 = 176.1 ± 8.5 厘米,相对 1RM HPC = 1.3 ± 0.2 千克-千克-1)完成了 2 次测试,包括完成 1RM HPC 和以 20、40、60、80 和 100% 的 1RM HPC 重复 JS。使用线性位置传感器确定同心持续时间和杠铃加速度大于重力加速度(即 a>-9.81 m-s-2)的推进阶段百分比(P%)。采用两个 1 路重复测量方差分析来比较不同负荷下的每个变量,而采用赫氏 g 效应量来检验差异的大小。同心持续时间从 449.7 毫秒到 469.8 毫秒不等,不同负荷之间差异不大(p = 0.253;g = 0.20-0.39)。使用 20、40、60、80 和 100% 1RM HPC 时,P% 分别为 57.4 ± 7.2%、64.8 ± 5.9%、73.2 ± 4.3%、78.7 ± 4.0% 和 80.3 ± 3.5%。80 和 100% 1RM 负荷时产生的 P% 明显高于 20、40 和 60% 1RM 时(P < 0.01,g = 1.30-3.90)。此外,与 20% 和 40% 1RM 负荷相比,60% 1RM 负荷时的 P% 明显更大(p < 0.01,g = 1.58-2.58),40% 1RM 负荷大于 20% 1RM 负荷(p = 0.003,g = 1.09)。每次负重时都会出现制动阶段,因此没有确定 1RM JS 负重。使用这种方法时,可能需要更大的负荷才能达到 100% 的推进阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Barbell Acceleration to Determine the 1 Repetition Maximum of the Jump Shrug.

Abstract: Techmanski, BS, Kissick, CR, Loturco, I, and Suchomel, TJ. Using barbell acceleration to determine the 1 repetition maximum of the jump shrug. J Strength Cond Res 38(8): 1486-1493, 2024-The purpose of this study was to determine the 1 repetition maximum (1RM) of the jump shrug (JS) using the barbell acceleration characteristics of repetitions performed with relative percentages of the hang power clean (HPC). Fifteen resistance-trained men (age = 25.5 ± 4.5 years, body mass = 88.5 ± 15.7 kg, height = 176.1 ± 8.5 cm, relative 1RM HPC = 1.3 ± 0.2 kg·kg-1) completed 2 testing sessions that included performing a 1RM HPC and JS repetitions with 20, 40, 60, 80, and 100% of their 1RM HPC. A linear position transducer was used to determine concentric duration and the percentage of the propulsive phase (P%) where barbell acceleration was greater than gravitational acceleration (i.e., a>-9.81 m·s-2). Two 1 way repeated measures ANOVA were used to compare each variable across loads, whereas Hedge's g effect sizes were used to examine the magnitude of the differences. Concentric duration ranged from 449.7 to 469.8 milliseconds and did not vary significantly between loads (p = 0.253; g = 0.20-0.39). The P% was 57.4 ± 7.2%, 64.8 ± 5.9%, 73.2 ± 4.3%, 78.7 ± 4.0%, and 80.3 ± 3.5% when using 20, 40, 60, 80, and 100% 1RM HPC, respectively. P% produced during the 80 and 100% 1RM loads were significantly greater than those at 20, 40, and 60% 1RM (p < 0.01, g = 1.30-3.90). In addition, P% was significantly greater during 60% 1RM compared with both 20 and 40% 1RM (p < 0.01, g = 1.58-2.58) and 40% was greater than 20% 1RM (p = 0.003, g = 1.09). A braking phase was present during each load and, thus, a 1RM JS load was not established. Heavier loads may be needed to achieve a 100% propulsive phase when using this method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
9.40%
发文量
384
审稿时长
3 months
期刊介绍: The editorial mission of The Journal of Strength and Conditioning Research (JSCR) is to advance the knowledge about strength and conditioning through research. A unique aspect of this journal is that it includes recommendations for the practical use of research findings. While the journal name identifies strength and conditioning as separate entities, strength is considered a part of conditioning. This journal wishes to promote the publication of peer-reviewed manuscripts which add to our understanding of conditioning and sport through applied exercise science.
期刊最新文献
Does Cathodal Preconditioning Enhance the Effects of Subsequent Anodal Transcranial Direct Current Stimulation on Corticospinal Excitability and Grip Strength? Evaluation of Trunk Oblique Muscle Activities in Baseball Batters Using T2-Weighted Magnetic Resonance Imaging. Frequency of Velocity-Based-Training Frequency Impacts Changes in Muscle Morphology, Neuromuscular Performance, and Functional Capability in Persons With Parkinson's Disease. Position-Specific Differences in Speed Profiles Among National Football League Scouting Combine Participants. Prediction of Snatch and Clean and Jerk Performance From Physical Performance Measures in Elite Male Weightlifters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1