环氧乙烷抑制公猪精子在获能过程中的功能

IF 3.3 4区 医学 Q2 REPRODUCTIVE BIOLOGY Reproductive toxicology Pub Date : 2024-07-26 DOI:10.1016/j.reprotox.2024.108678
Jae-Hwan Jo , Claudine Uwamahoro , Seung-Ik Jang , Eun-Ju Jung , Woo-Jin Lee , Jeong-Won Bae , Dae-Hyun Kim , Jun Koo Yi , Dong Yep Oh , Jae Jung Ha , Woo-Sung Kwon
{"title":"环氧乙烷抑制公猪精子在获能过程中的功能","authors":"Jae-Hwan Jo ,&nbsp;Claudine Uwamahoro ,&nbsp;Seung-Ik Jang ,&nbsp;Eun-Ju Jung ,&nbsp;Woo-Jin Lee ,&nbsp;Jeong-Won Bae ,&nbsp;Dae-Hyun Kim ,&nbsp;Jun Koo Yi ,&nbsp;Dong Yep Oh ,&nbsp;Jae Jung Ha ,&nbsp;Woo-Sung Kwon","doi":"10.1016/j.reprotox.2024.108678","DOIUrl":null,"url":null,"abstract":"<div><p>Ethylene oxide (E.O) is an epoxide compound, and it has been utilized as a sterilizer or production of ether compounds in several industries. Although the toxic effects of E.O on bacteria and mammals have been reported, its effects on male reproductive toxicity during sperm capacitation are not fully understood. Therefore, this study was designed to evaluate the effects of E.O exposure during sperm capacitation. Boar spermatozoa were treated with various E.O concentrations (0, 0.1, 1, 10, and 100 μМ). After exposure, sperm motility, motion kinematics, capacitation status, intracellular ATP levels, cell viability, expression levels of protein kinase A (PKA) activation, and tyrosine phosphorylation were evaluated. Results revealed that E.O exposure significantly decreased sperm motility, motion kinematics, and intracellular ATP levels but significantly increased the capacitated spermatozoa. In addition, the PKA activation and tyrosine phosphorylation were abnormally changed. According to our results, E.O may cause toxic effects on sperm function during capacitation, which induces male reproductive toxicity. Consequently, we suggest that male reproductive toxicity should be considered when using E.O.</p></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"129 ","pages":"Article 108678"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethylene oxide suppresses boar sperm function during capacitation\",\"authors\":\"Jae-Hwan Jo ,&nbsp;Claudine Uwamahoro ,&nbsp;Seung-Ik Jang ,&nbsp;Eun-Ju Jung ,&nbsp;Woo-Jin Lee ,&nbsp;Jeong-Won Bae ,&nbsp;Dae-Hyun Kim ,&nbsp;Jun Koo Yi ,&nbsp;Dong Yep Oh ,&nbsp;Jae Jung Ha ,&nbsp;Woo-Sung Kwon\",\"doi\":\"10.1016/j.reprotox.2024.108678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ethylene oxide (E.O) is an epoxide compound, and it has been utilized as a sterilizer or production of ether compounds in several industries. Although the toxic effects of E.O on bacteria and mammals have been reported, its effects on male reproductive toxicity during sperm capacitation are not fully understood. Therefore, this study was designed to evaluate the effects of E.O exposure during sperm capacitation. Boar spermatozoa were treated with various E.O concentrations (0, 0.1, 1, 10, and 100 μМ). After exposure, sperm motility, motion kinematics, capacitation status, intracellular ATP levels, cell viability, expression levels of protein kinase A (PKA) activation, and tyrosine phosphorylation were evaluated. Results revealed that E.O exposure significantly decreased sperm motility, motion kinematics, and intracellular ATP levels but significantly increased the capacitated spermatozoa. In addition, the PKA activation and tyrosine phosphorylation were abnormally changed. According to our results, E.O may cause toxic effects on sperm function during capacitation, which induces male reproductive toxicity. Consequently, we suggest that male reproductive toxicity should be considered when using E.O.</p></div>\",\"PeriodicalId\":21137,\"journal\":{\"name\":\"Reproductive toxicology\",\"volume\":\"129 \",\"pages\":\"Article 108678\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089062382400145X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089062382400145X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环氧乙烷(E.O.)是一种环氧化物化合物,在多个行业中被用作杀菌剂或生产醚类化合物。虽然环氧乙烷对细菌和哺乳动物的毒性影响已有报道,但其对精子获能过程中男性生殖毒性的影响还不完全清楚。因此,本研究旨在评估精子获能过程中接触 E.O 的影响。野猪精子经不同浓度的 E.O 处理(0、0.1、1、10 和 100 μМ)。暴露后,对精子的运动能力、运动运动学、获能状态、细胞内 ATP 水平、细胞活力、蛋白激酶 A(PKA)激活表达水平和酪氨酸磷酸化进行了评估。结果显示,暴露于 E.O 会明显降低精子的运动能力、运动运动学和细胞内 ATP 水平,但会明显增加获能精子的数量。此外,PKA 的活化和酪氨酸磷酸化也发生了异常变化。根据我们的研究结果,E.O 可能会在获能过程中对精子功能产生毒性影响,从而诱发男性生殖毒性。因此,我们建议在使用 E.O 时应考虑到男性生殖毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ethylene oxide suppresses boar sperm function during capacitation

Ethylene oxide (E.O) is an epoxide compound, and it has been utilized as a sterilizer or production of ether compounds in several industries. Although the toxic effects of E.O on bacteria and mammals have been reported, its effects on male reproductive toxicity during sperm capacitation are not fully understood. Therefore, this study was designed to evaluate the effects of E.O exposure during sperm capacitation. Boar spermatozoa were treated with various E.O concentrations (0, 0.1, 1, 10, and 100 μМ). After exposure, sperm motility, motion kinematics, capacitation status, intracellular ATP levels, cell viability, expression levels of protein kinase A (PKA) activation, and tyrosine phosphorylation were evaluated. Results revealed that E.O exposure significantly decreased sperm motility, motion kinematics, and intracellular ATP levels but significantly increased the capacitated spermatozoa. In addition, the PKA activation and tyrosine phosphorylation were abnormally changed. According to our results, E.O may cause toxic effects on sperm function during capacitation, which induces male reproductive toxicity. Consequently, we suggest that male reproductive toxicity should be considered when using E.O.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reproductive toxicology
Reproductive toxicology 生物-毒理学
CiteScore
6.50
自引率
3.00%
发文量
131
审稿时长
45 days
期刊介绍: Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine. All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.
期刊最新文献
Bone morphogenetic protein signaling pathway– Ethanol interactions disrupt palate formation independent of gata3 Could probiotics be used as a novel therapeutic approach to alleviate the reproductive and neurobehavioral side effects of sertraline? A study in male mice Critical appraisal of the Expert Knowledge Elicitation (EKE) methodology to identify uncertainties in building cumulative assessment groups for craniofacial alterations. 'Evaluation of reproductive toxicology studies according the OECD Guidance Document 443 - claim and reality'. Assessing male reproductive toxicity of environmental pollutant di-ethylhexyl phthalate with network toxicology and molecular docking strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1