秀丽隐杆线虫体内的聚(U)聚合酶活性调节 sRNA 和 mRNA 的丰度和尾部。

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY Genetics Pub Date : 2024-07-28 DOI:10.1093/genetics/iyae120
Leanne H Kelley, Ian V Caldas, Matthew T Sullenberger, Kevin E Yongblah, Adnan M Niazi, Anoop Iyer, Yini Li, Patrick Minty Tran, Eivind Valen, Yasir H Ahmed-Braimah, Eleanor M Maine
{"title":"秀丽隐杆线虫体内的聚(U)聚合酶活性调节 sRNA 和 mRNA 的丰度和尾部。","authors":"Leanne H Kelley, Ian V Caldas, Matthew T Sullenberger, Kevin E Yongblah, Adnan M Niazi, Anoop Iyer, Yini Li, Patrick Minty Tran, Eivind Valen, Yasir H Ahmed-Braimah, Eleanor M Maine","doi":"10.1093/genetics/iyae120","DOIUrl":null,"url":null,"abstract":"<p><p>Terminal nucleotidyl transferases add nucleotides to the 3' end of RNA to modify their stability and function. In Caenorhabditis elegans, the terminal uridyltransferases/poly(U) polymerases PUP-1 (aka CID-1, CDE-1), PUP-2, and PUP-3 affect germline identity, survival, and development. Here, we identify small RNA (sRNA) and mRNA targets of these PUPs and of a fourth predicted poly(U) polymerase, F43E2.1/PUP-4. Using genetic and RNA sequencing approaches, we identify RNA targets of each PUP and the U-tail frequency and length of those targets. At the whole organism level, PUP-1 is responsible for most sRNA U-tailing, and other PUPs contribute to modifying discrete subsets of sRNAs. Moreover, expression of PUP-2, PUP-3, and especially PUP-4 limit uridylation on some sRNAs. The relationship between uridylation status and sRNA abundance suggests that U-tailing can have a negative or positive effect on abundance depending on context. sRNAs modified by PUP activity primarily target mRNAs that are ubiquitously expressed or most highly expressed in the germline. mRNA data obtained with a Nanopore-based method reveal that addition of U-tails to non-adenylated mRNA is substantially reduced in the absence of PUP-3. Overall, this work identifies PUP RNA targets, defines the effect of uridylation loss on RNA abundance, and reveals the complexity of PUP regulation in C. elegans development.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly(U) polymerase activity in Caenorhabditis elegans regulates abundance and tailing of sRNA and mRNA.\",\"authors\":\"Leanne H Kelley, Ian V Caldas, Matthew T Sullenberger, Kevin E Yongblah, Adnan M Niazi, Anoop Iyer, Yini Li, Patrick Minty Tran, Eivind Valen, Yasir H Ahmed-Braimah, Eleanor M Maine\",\"doi\":\"10.1093/genetics/iyae120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Terminal nucleotidyl transferases add nucleotides to the 3' end of RNA to modify their stability and function. In Caenorhabditis elegans, the terminal uridyltransferases/poly(U) polymerases PUP-1 (aka CID-1, CDE-1), PUP-2, and PUP-3 affect germline identity, survival, and development. Here, we identify small RNA (sRNA) and mRNA targets of these PUPs and of a fourth predicted poly(U) polymerase, F43E2.1/PUP-4. Using genetic and RNA sequencing approaches, we identify RNA targets of each PUP and the U-tail frequency and length of those targets. At the whole organism level, PUP-1 is responsible for most sRNA U-tailing, and other PUPs contribute to modifying discrete subsets of sRNAs. Moreover, expression of PUP-2, PUP-3, and especially PUP-4 limit uridylation on some sRNAs. The relationship between uridylation status and sRNA abundance suggests that U-tailing can have a negative or positive effect on abundance depending on context. sRNAs modified by PUP activity primarily target mRNAs that are ubiquitously expressed or most highly expressed in the germline. mRNA data obtained with a Nanopore-based method reveal that addition of U-tails to non-adenylated mRNA is substantially reduced in the absence of PUP-3. Overall, this work identifies PUP RNA targets, defines the effect of uridylation loss on RNA abundance, and reveals the complexity of PUP regulation in C. elegans development.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae120\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae120","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

末端核苷酸转移酶将核苷酸添加到 RNA 的 3' 端,以改变其稳定性和功能。在秀丽隐杆线虫中,末端尿苷酰转移酶/多聚(U)聚合酶 PUP-1(又名 CID-1、CDE-1)、PUP-2 和 PUP-3 影响种系特征、存活和发育。在这里,我们确定了这些聚合酶以及第四种预测的聚(U)聚合酶 F43E2.1/PUP-4 的小 RNA(sRNA)和 mRNA 靶标。利用基因和 RNA 测序方法,我们确定了每个 PUP 的 RNA 靶标以及这些靶标的 U 尾频率和长度。在整个生物体水平上,PUP-1 负责了大部分 sRNA 的 U-尾,而其他 PUP 则负责修改离散的 sRNA 亚群。此外,PUP-2、PUP-3,尤其是 PUP-4 的表达限制了某些 sRNA 的尿苷酰化。尿苷酸化状态与 sRNA 丰度之间的关系表明,U-尾会根据具体情况对丰度产生消极或积极的影响。通过 PUP 活性修饰的 sRNA 主要靶向普遍表达或在生殖系中高表达的 mRNA。总之,这项工作确定了 PUP RNA 的靶标,定义了尿苷酸化缺失对 RNA 丰度的影响,并揭示了 PUP 在秀丽隐杆线虫发育过程中调控的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poly(U) polymerase activity in Caenorhabditis elegans regulates abundance and tailing of sRNA and mRNA.

Terminal nucleotidyl transferases add nucleotides to the 3' end of RNA to modify their stability and function. In Caenorhabditis elegans, the terminal uridyltransferases/poly(U) polymerases PUP-1 (aka CID-1, CDE-1), PUP-2, and PUP-3 affect germline identity, survival, and development. Here, we identify small RNA (sRNA) and mRNA targets of these PUPs and of a fourth predicted poly(U) polymerase, F43E2.1/PUP-4. Using genetic and RNA sequencing approaches, we identify RNA targets of each PUP and the U-tail frequency and length of those targets. At the whole organism level, PUP-1 is responsible for most sRNA U-tailing, and other PUPs contribute to modifying discrete subsets of sRNAs. Moreover, expression of PUP-2, PUP-3, and especially PUP-4 limit uridylation on some sRNAs. The relationship between uridylation status and sRNA abundance suggests that U-tailing can have a negative or positive effect on abundance depending on context. sRNAs modified by PUP activity primarily target mRNAs that are ubiquitously expressed or most highly expressed in the germline. mRNA data obtained with a Nanopore-based method reveal that addition of U-tails to non-adenylated mRNA is substantially reduced in the absence of PUP-3. Overall, this work identifies PUP RNA targets, defines the effect of uridylation loss on RNA abundance, and reveals the complexity of PUP regulation in C. elegans development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
期刊最新文献
Admixture in the fungal pathogen Blastomyces. An explanation for the sister repulsion phenomenon in Patterson's f-statistics. The Raf/LIN-45 C-terminal distal tail segment negatively regulates signaling in Caenorhabditis elegans. Revisiting the role of the spindle assembly checkpoint in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae. An anatomical atlas of Drosophila melanogaster-the wild-type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1