Raphael Ledermann, Alexandre Bourdès, Marion Schuller, Beatriz Jorrin, Ivan Ahel, Philip Simon Poole
{"title":"豆芽根瘤菌的天门冬氨酸氨基转移酶具有扩展的底物特异性,能代谢天门冬氨酸,使豌豆结核中的氮固定。","authors":"Raphael Ledermann, Alexandre Bourdès, Marion Schuller, Beatriz Jorrin, Ivan Ahel, Philip Simon Poole","doi":"10.1099/mic.0.001471","DOIUrl":null,"url":null,"abstract":"<p><p><i>Rhizobium leguminosarum</i> aspartate aminotransferase (AatA) mutants show drastically reduced symbiotic nitrogen fixation in legume nodules. Whilst AatA reversibly transaminates the two major amino-donor compounds aspartate and glutamate, the reason for the lack of N<sub>2</sub> fixation in the mutant has remained unclear. During our investigations into the role of AatA, we found that it catalyses an additional transamination reaction between aspartate and pyruvate, forming alanine. This secondary reaction runs at around 60 % of the canonical aspartate transaminase reaction rate and connects alanine biosynthesis to glutamate via aspartate. This may explain the lack of any glutamate-pyruvate transaminase activity in <i>R. leguminosarum</i>, which is common in eukaryotic and many prokaryotic genomes. However, the aspartate-to-pyruvate transaminase reaction is not needed for N<sub>2</sub> fixation in legume nodules. Consequently, we show that aspartate degradation is required for N<sub>2</sub> fixation, rather than biosynthetic transamination to form an amino acid. Hence, the enzyme aspartase, which catalyses the breakdown of aspartate to fumarate and ammonia, suppressed an AatA mutant and restored N<sub>2</sub> fixation in pea nodules.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286295/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aspartate aminotransferase of <i>Rhizobium leguminosarum</i> has extended substrate specificity and metabolizes aspartate to enable N<sub>2</sub> fixation in pea nodules.\",\"authors\":\"Raphael Ledermann, Alexandre Bourdès, Marion Schuller, Beatriz Jorrin, Ivan Ahel, Philip Simon Poole\",\"doi\":\"10.1099/mic.0.001471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Rhizobium leguminosarum</i> aspartate aminotransferase (AatA) mutants show drastically reduced symbiotic nitrogen fixation in legume nodules. Whilst AatA reversibly transaminates the two major amino-donor compounds aspartate and glutamate, the reason for the lack of N<sub>2</sub> fixation in the mutant has remained unclear. During our investigations into the role of AatA, we found that it catalyses an additional transamination reaction between aspartate and pyruvate, forming alanine. This secondary reaction runs at around 60 % of the canonical aspartate transaminase reaction rate and connects alanine biosynthesis to glutamate via aspartate. This may explain the lack of any glutamate-pyruvate transaminase activity in <i>R. leguminosarum</i>, which is common in eukaryotic and many prokaryotic genomes. However, the aspartate-to-pyruvate transaminase reaction is not needed for N<sub>2</sub> fixation in legume nodules. Consequently, we show that aspartate degradation is required for N<sub>2</sub> fixation, rather than biosynthetic transamination to form an amino acid. Hence, the enzyme aspartase, which catalyses the breakdown of aspartate to fumarate and ammonia, suppressed an AatA mutant and restored N<sub>2</sub> fixation in pea nodules.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"170 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286295/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001471\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001471","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Aspartate aminotransferase of Rhizobium leguminosarum has extended substrate specificity and metabolizes aspartate to enable N2 fixation in pea nodules.
Rhizobium leguminosarum aspartate aminotransferase (AatA) mutants show drastically reduced symbiotic nitrogen fixation in legume nodules. Whilst AatA reversibly transaminates the two major amino-donor compounds aspartate and glutamate, the reason for the lack of N2 fixation in the mutant has remained unclear. During our investigations into the role of AatA, we found that it catalyses an additional transamination reaction between aspartate and pyruvate, forming alanine. This secondary reaction runs at around 60 % of the canonical aspartate transaminase reaction rate and connects alanine biosynthesis to glutamate via aspartate. This may explain the lack of any glutamate-pyruvate transaminase activity in R. leguminosarum, which is common in eukaryotic and many prokaryotic genomes. However, the aspartate-to-pyruvate transaminase reaction is not needed for N2 fixation in legume nodules. Consequently, we show that aspartate degradation is required for N2 fixation, rather than biosynthetic transamination to form an amino acid. Hence, the enzyme aspartase, which catalyses the breakdown of aspartate to fumarate and ammonia, suppressed an AatA mutant and restored N2 fixation in pea nodules.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.