Subigya Nepal, Arvind Pillai, William Campbell, Talie Massachi, Eunsol Soul Choi, Orson Xu, Joanna Kuc, Jeremy Huckins, Jason Holden, Colin Depp, Nicholas Jacobson, Mary Czerwinski, Eric Granholm, Andrew T Campbell
{"title":"情境人工智能日志:整合 LLM 和时间序列行为传感技术,利用 MindScape 应用程序促进自我反思和幸福感。","authors":"Subigya Nepal, Arvind Pillai, William Campbell, Talie Massachi, Eunsol Soul Choi, Orson Xu, Joanna Kuc, Jeremy Huckins, Jason Holden, Colin Depp, Nicholas Jacobson, Mary Czerwinski, Eric Granholm, Andrew T Campbell","doi":"10.1145/3613905.3650767","DOIUrl":null,"url":null,"abstract":"<p><p>MindScape aims to study the benefits of integrating time series behavioral patterns (e.g., conversational engagement, sleep, location) with Large Language Models (LLMs) to create a new form of contextual AI journaling, promoting self-reflection and well-being. We argue that integrating behavioral sensing in LLMs will likely lead to a new frontier in AI. In this Late-Breaking Work paper, we discuss the MindScape contextual journal App design that uses LLMs and behavioral sensing to generate contextual and personalized journaling prompts crafted to encourage self-reflection and emotional development. We also discuss the MindScape study of college students based on a preliminary user study and our upcoming study to assess the effectiveness of contextual AI journaling in promoting better well-being on college campuses. MindScape represents a new application class that embeds behavioral intelligence in AI.</p>","PeriodicalId":73006,"journal":{"name":"Extended abstracts on Human factors in computing systems. CHI Conference","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275533/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contextual AI Journaling: Integrating LLM and Time Series Behavioral Sensing Technology to Promote Self-Reflection and Well-being using the MindScape App.\",\"authors\":\"Subigya Nepal, Arvind Pillai, William Campbell, Talie Massachi, Eunsol Soul Choi, Orson Xu, Joanna Kuc, Jeremy Huckins, Jason Holden, Colin Depp, Nicholas Jacobson, Mary Czerwinski, Eric Granholm, Andrew T Campbell\",\"doi\":\"10.1145/3613905.3650767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MindScape aims to study the benefits of integrating time series behavioral patterns (e.g., conversational engagement, sleep, location) with Large Language Models (LLMs) to create a new form of contextual AI journaling, promoting self-reflection and well-being. We argue that integrating behavioral sensing in LLMs will likely lead to a new frontier in AI. In this Late-Breaking Work paper, we discuss the MindScape contextual journal App design that uses LLMs and behavioral sensing to generate contextual and personalized journaling prompts crafted to encourage self-reflection and emotional development. We also discuss the MindScape study of college students based on a preliminary user study and our upcoming study to assess the effectiveness of contextual AI journaling in promoting better well-being on college campuses. MindScape represents a new application class that embeds behavioral intelligence in AI.</p>\",\"PeriodicalId\":73006,\"journal\":{\"name\":\"Extended abstracts on Human factors in computing systems. CHI Conference\",\"volume\":\"2024 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extended abstracts on Human factors in computing systems. CHI Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3613905.3650767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extended abstracts on Human factors in computing systems. CHI Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3613905.3650767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Contextual AI Journaling: Integrating LLM and Time Series Behavioral Sensing Technology to Promote Self-Reflection and Well-being using the MindScape App.
MindScape aims to study the benefits of integrating time series behavioral patterns (e.g., conversational engagement, sleep, location) with Large Language Models (LLMs) to create a new form of contextual AI journaling, promoting self-reflection and well-being. We argue that integrating behavioral sensing in LLMs will likely lead to a new frontier in AI. In this Late-Breaking Work paper, we discuss the MindScape contextual journal App design that uses LLMs and behavioral sensing to generate contextual and personalized journaling prompts crafted to encourage self-reflection and emotional development. We also discuss the MindScape study of college students based on a preliminary user study and our upcoming study to assess the effectiveness of contextual AI journaling in promoting better well-being on college campuses. MindScape represents a new application class that embeds behavioral intelligence in AI.